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Abstract

This paper explores rollover risk management using callable bonds with call pro-

tection. Using a theoretical framework that allows firms to adjust debt refinancing

timing within call periods, we analyze the trade-off between the benefits of increased

timing flexibility and the increased costs of call risk demanded by bondholders. Our

findings indicate that firms facing high rollover risks prefer shorter call protection

lengths. This strategy enhances creditworthiness and promotes earlier refinancing

calls that align closely with the start of call periods. Consequently, call protection

length emerges as a more accurate indicator of effective maturity. Our empirical

evidence strongly supports these dynamics.
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1 Introduction

Research on corporate debt maturity underscores the critical role that strategic debt

profile management plays in mitigating rollover risk, as highlighted by CFO surveys con-

ducted by Graham and Harvey (2001) and Servaes and Tufano (2006). These surveys

identified rollover risk as a key factor in shaping debt maturity structures and under-

scored the need to understand more clearly how firms actively manage their debt matu-

rities. Choi et al. (2018) addressed this issue by showcasing the variety of strategies that

firms employ to address rollover risk through adjustments in debt maturity. Motivated by

these insights, we use this paper to analyze the novel role that refinancing callable bonds

plays in debt maturity management. Firms use callable bonds strategically to reconfigure

their debt structures, which allows for the early redemption and replacement of existing

bonds. This approach not only introduces a significant layer of flexibility in managing

debt maturities but also highlights that effective maturity serves as a pivotal element

in firms’ strategy to mitigate rollover risk. Despite its importance, the strategic use of

callable bonds and its impact on effective maturity and rollover risk management has not

been thoroughly examined. Our research aims to fill this void by analyzing debt maturity

management strategies more fully, as well as addressing their implications for financial

stability and risk mitigation.

As a motivating example, the U.S. corporate bond market, where nearly 90% of all

bonds feature call provisions, presents a notable shift from the conventional focus on

nominal debt maturity stated at issuance (abbreviated as stated maturity, hereafter).1

These provisions allow firms to issue long-term bonds with the option for early redemption,

thus offering the flexibility to effectively shorten a bond’s term. Figure 1, Panel A,

shows a marked divergence between the effective and stated maturities of bonds, and

1According to statistics reported by the Securities Industry and Financial Markets Association, the
corporate bond issuance volume in the US market grew from 337.4 billion in 1996 to 2,274.9 billion dollars
in 2020; bonds with call provisions also increased from 14% of the total issuance volume in 1996 to nearly
90% in 2020.
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captures a growing tendency for effective maturity to mirror call protection periods.2

This pattern has become increasingly apparent over the past three decades, thus making

call protection periods an essential, though often overlooked, measure of a bond’s real

lifespan.3 Firms are adopting strategies that prioritize retiring callable bonds just as call

protection expires, underscoring the significance of call protection duration in defining true

maturity. This evolution towards incorporating call protection as a key factor in maturity

planning highlights a critical area for research: developing a comprehensive framework

for choosing call protection lengths that effectively inform debt maturity decisions.

Our study addresses a significant gap in the finance literature by introducing a theo-

retical model that determines the optimal length of call protection for callable bonds. We

build upon the structural credit risk framework by Leland and Toft (1996), which links

debt default decisions to stated maturities and refinancing (rollover) commitments. Our

innovative model considers a debt structure that includes both non-callable and longer-

term callable bonds with lumpy maturities – a feature prevalent in financial data (Choi

et al., 2018) and the corporate bond market (as shown in Figure 1, Panel B).4 We also

explore how call protection, a critical but often neglected aspect in existing models,5

strategically provides firms with a certain level of flexibility, so they may refinance early

to benefit their shareholders.6 To identify the best refinancing strategies after the call

2This discrepancy is likely attributed to the fact that callable bonds are almost twice as likely to be
retired early as non-callable bonds (Brown and Powers, 2020). Generally, non-callable bonds can only be
redeemed early through tender offers or repurchases at their prevailing market prices, whereas callable
bonds can be redeemed early through tender offers, repurchases, or calls. In particular, predetermined
call prices for fixed-price callable bonds establish upper limits on redemption prices, thereby facilitating
early redemption compared to redemption through make-whole calls. On the other hand, a make-whole
call price, which is determined ex post according to the prevailing level of interest rates, usually serves as
the cap on the price of a successful tender offer (Mann and Powers, 2003). Therefore, the presence of a
make-whole call provision can alleviate uncertainty of the early redemption through a tender offer (Brown
and Powers, 2020).

3The decline in the average stated maturity of newly-issued corporate bonds is first documented by
Custódio et al. (2013). This trend is driven not only by sell-side factors in the corporate bond market
but also by buy-side ones (Greenwood et al., 2010; Paligorova and Santos, 2017; Butler et al., 2022).

4Without the ex ante commitment to a bond’s stated maturity, He and Milbradt (2016) and Hu et al.
(2023) study a firm’s ability to adjust stated maturity over time through the debt structure involving
non-callable bonds with different stated maturities.

5For example, see Leland (1998), Goldstein et al. (2001), Titman and Tsyplakov (2007), Chen (2010),
Morellec et al. (2012), Chen et al. (2021), Dangl and Zechner (2021), among others.

6Our framework focuses on call-driven early refinancing activities, as in Chen et al. (2021) and Dangl
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protection period, our model applies a backward-recursive pricing algorithm through a

tree-based “forest” approach (Liu et al., 2016).

A key feature in our model is that it enables issuers of callable bonds to set a call period

between the first call date and a bond’s stated maturity date, rather than committing to

a single maturity date at issuance. Issuers can then tailor a bond’s effective maturity with

early refinancing, choosing the most opportune moment based on their financial health.

This capability prevents the need to issue new bonds during times of financial strain,

which thus protects the issuer’s credit quality.

Our model produces four key outcomes, starting with the determination of the opti-

mal call protection length. By setting a bond’s stated maturity, a shorter call protection

period creates more opportunities for early refinancing, thereby providing issuers with

greater flexibility that helps prevent debt defaults amid significant rollover risks. How-

ever, while this reduction in a call protection period boosts a firm’s credit standing and

lowers the default risk premium that bondholders demand, it simultaneously raises the

call risk premium. Consequently, firms must balance the benefits of increased timing

flexibility against the increased costs associated with call risk. Our theoretical framework

pinpoints the optimal call protection length that maximizes the total value of a levered

firm at inception. Based on this benefit-cost trade-off, our calibrated model recommends

a realistic 3-year call protection for a 10-year callable bond, which is consistent with

empirical observations.

Second, our model explores how the timing flexibility provided by predetermined call

periods affects a firm’s early refinancing decisions as well as the effective maturities of

its callable bonds. By strategically determining call protection lengths, firms can adjust

refinancing times post-issuance based on their financial status. This flexibility helps firms

avoid issuing new bonds during financial downturns, thus minimizing bankruptcy costs

and Zechner (2021), so we may directly associate refinancing timing with the stated call protection
period. In the model of DeMarzo and He (2021), early refinancing is, on the other hand, driven by a debt
repurchase at the prevailing debt market price.
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linked to rollover risks and enhancing overall levered firm value. This increased value

encourages firms to initiate refinancing earlier within call periods. Through proactive

debt repricing and refinancing, firms secure gains for shareholders, reducing the potential

for risk-shifting or underinvestment behaviors (Myers, 1977; Lambrecht and Myers, 2008;

Diamond and He, 2014).7 As a result, this “call-to-shorten” strategy shifts the effective

maturity dates of callable bonds towards the start of call periods, making call protection

length a more accurate measure of a bond’s real lifespan. Our calibrated model quanti-

tatively predicts an effective maturity of about 4.2 years for a 10-year callable bond with

a 3-year call protection, which closely aligns with empirical data.

Third, we analyze how firms with varying levels of leverage select their call protec-

tion lengths and their timing of early refinancing. High-leverage firms, those which face

greater rollover risks compared to their low-leverage peers (Childs et al., 2005; He and

Xiong, 2012b), gain more by shortening call protection periods to increase the timing

flexibility of call provisions. Our model suggests that these firms are inclined to reduce

call protection lengths, so they may better handle rollover risks. This preference is also

evident in firms dependent on short-term debt, which typically undergo frequent rollovers.

Moreover, the strategic determination of call protection lengths allows for call-to-shorten

refinancing strategy to be adopted, which closely aligns effective maturities of callable

bonds with their call protection periods. Consequently, our model predicts a marked

disparity between effective and stated maturities as firms choose shorter call protection

periods.8 These insights clarify the strategic decision-making between non-callable and

longer-term callable bonds, both of which can mitigate conflicts between shareholders

and bondholders (Robbins and Schatzberg, 1986). Hence, our model indicates that firms

7More specifically, by keeping debt structure flexible to avoid substantial rollover risk, issuers of
callable bonds can effectively enhance creditworthiness and thus alleviate the underinvestment problem
stemming from debt overhang (Myers, 1977, 1984).

8Samet and Obay (2014) empirically examine call risk premiums in a global framework, finding that
firms with high leverage have a higher call risk premium than those with low leverage. Our model
rationalizes this finding by demonstrating that high-leverage firms tend to choose shorter call protection
periods and redeem their callable bonds earlier.

5



with higher rollover risk exposure might simulate short-term borrowing by issuing callable

bonds with brief call protection periods.

Table 1 provides two illustrations to demonstrate how two high-leverage firms execute

this simulation. In Panel A, General Mills issued 25-year and 12-year callable bonds in

1998 and 1999, with 5-year and 4-year call protections, respectively. Early redemption

transformed these into effectively shorter-term bonds. General Mills then issued four

callable bonds with 1-year call protections, simulating short-term borrowing. Panel B

meanwhile shows Barclays Bank issuing three callable bonds with 1-year call protections

in 2011, redeemed early to act as 1-year bonds. Barclays continued this approach by

issuing two more callable bonds with 1-year protections, perpetuating the strategy of

emulating short-term borrowing.

Lastly, we explore the welfare implications of strategically utilizing callable bonds.

By comparing the interest costs of refinancing with callable bonds to those of rolling

over shorter-term non-callable bonds, we assess the financial benefits of callable bonds.

This comparison, based on data trends over the past two decades depicted in Figure 1,

matches the stated maturities of non-callable bonds with the call protection lengths of

callable bonds, so we may evaluate the cost-effectiveness of specifying a call period rather

than a single maturity date at issuance.

While callable bonds may initially seem more expensive due to call risk premiums –

especially for low-leverage firms with minimal rollover risks – the scenario shifts for high-

leverage firms. For the latter, shorter call protection periods increase timing flexibility,

reduce the risk of financial distress, and lower interest costs, thereby making callable

bonds a more economical option by reducing default risk premiums. This flexibility is

particularly crucial for firms with significant rollover risk exposure, supporting the notion

that financial flexibility enables cost-effective financing solutions (Gamba and Triantis,

2008). Research consistently shows that firms with higher leverage or those dependent on

short-term debt tend to favor callable bonds (Chen et al., 2010; Brown and Powers, 2020;
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Cathcart et al., 2020).

We validate our model’s predictions with empirical data, which robustly supports

our theoretical insights. Our analysis highlights three key findings: firms’ preference for

shorter call protection periods, the divergence of effective maturities from stated maturi-

ties, and the decrease in interest costs achieved through the strategic use of callable bonds.

Specifically, firms facing higher rollover risks consistently choose shorter call protections,

engage in earlier debt refinancing, and align effective maturities more closely with call

protection durations. Our data indicate that for 10-year callable bonds, those issued by

high-leverage firms feature call protection periods that are, on average, 1.3 years shorter

than those issued by low-leverage firms. Furthermore, high-leverage firms tend to redeem

these bonds approximately 1.1 years earlier than their low-leverage counterparts. This

behavior results in a notable 3.02% decrease in call protection lengths relative to stated

maturities through early refinancing over time, compared to just a 0.95% reduction in

low-leverage firms. Additionally, firms with intense refinancing needs tend to exercise

call options sooner, with an average reduction in effective maturity of about 18%, which

contrasts sharply with the 7% reduction observed in firms with less frequent refinancing

needs. This empirical evidence highlights a clear trend toward shorter call protection and

earlier refinancing among firms with heightened rollover risks.

Finally, we analyze how shorter call protection and earlier refinancing affect firms’

interest costs on their outstanding bonds. Despite expectations that shorter call protection

could increase call risk premiums, our findings indicate that the average coupon rate

remains stable or even decreases after refinancing. This finding highlights the significant

advantages of the financial flexibility that callable bonds provide, especially in helping to

lower default risk premiums. These results demonstrate that proactive debt management

effectively reduces rollover risks without raising costs.

This paper makes several contributions to the literature. Building upon insights from

Powers (2021), we enhance the discourse on call protection by presenting a novel theoret-

7



ical model used to identify the optimal call protection length, which marks a significant

advance in this area. Previously, Marr and Ogden (1989) uniquely connected the length

of call protection to a trade-off between benefits and costs, noting that while shorter call

protection periods increase flexibility to address underinvestment (Thatcher, 1985) and in-

formation asymmetry issues (Robbins and Schatzberg, 1986), they also necessitate higher

call risk premiums. Their research indicated that firms facing significant risks related to

these issues often opt for shorter call protection periods.

Our model extends this argument by linking the choice of call protection length to

the intricate balance between rollover risk and the debt overhang problem, which leads

to underinvestment (Myers, 1977, 1984). As we consider the timing flexibility that a call

period provides, our approach evaluates this balance through the lens of bondholders’

required call risk and default risk premiums related to rollover risk. As noted by Powers

(2021), the optimal call protection length derived from our model mirrors the considerable

variations observed in practice, offering a comprehensive view of how firms navigate these

complex trade-offs.

Secondly, our paper contributes to the extensive literature on rollover risk manage-

ment, which explores how firms use financial flexibility to overcome challenges that might

hinder refinancing efforts. Such strategies include adjusting strategic cash reserves (Bolton

et al., 2011; Acharya et al., 2012; Harford et al., 2014) and modifying leverage (Childs

et al., 2005; DeMarzo and He, 2021; Dangl and Zechner, 2021). Brunnermeier and Yogo

(2009) highlight the use of short-term borrowing to allow quicker debt maturity adjust-

ments, thereby improving the prospects of securing long-term financing before economic

downturns. Similarly, He and Milbradt (2016) and Hu et al. (2023) explore the strategic

use of both short-term and long-term non-callable debt, analyzing how firms adjust the

proportions of each type in response to worsening credit conditions.

Choi et al. (2018, 2021) analyze the strategic management of debt maturity disper-

sion, exploring how firms can mitigate rollover risks by diversifying the distribution of
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their stated maturities. Conversely, Mian and Santos (2018) focus on how firms adjust

the timing of their debt refinancing, finding that creditworthy firms are more inclined to

refinance early under favorable credit conditions, so they may secure longer loan matu-

rities as a hedge against future borrowing under less favorable conditions. Studying the

corporate bond market, Xu (2018) and Ma et al. (2023) demonstrate that speculative

firms frequently use callable bonds to refinance earlier than planned, thereby lengthening

the average stated maturity of their outstanding bonds.

Our paper contributes to this literature by providing insights on the timing flexibil-

ity offered by the call period. Although Xu (2018) and Ma et al. (2023) acknowledge

the use of call provisions for early refinancing, they view call protection length as an

externally determined term based on the rule of thumb. Our key contribution is that

we incorporate the choice of call protection length into the dynamic trade-off framework

of Leland and Toft (1996), which interrelates debt default decisions with rollover risk.

This incorporation not only allows us to decode callable bonds from the broader credit

view (Becker et al., 2024) but also to explain significant variations in protection length

observed in practice (Powers, 2021). In addition, a callable bond with call protection

embodies the unique attributes of both short-term and long-term non-callables, and its

multiple scheduled call dates within a call period further allows firms to secure long-term

financing from the outset while retaining the option to refinance early at their discre-

tion after issuance. This makes callable bonds a more adaptable and effective instrument

for managing rollover risk compared to that of solely relying on a combination of non-

callables, as discussed in He and Milbradt (2016) and Hu et al. (2023). Moreover, the

strategy of tailoring call protection lengths and call date numbers closely resembles the

strategy of dispersing debt maturity to reduce rollover risk. This resemblance allows our

findings to align with insights of Choi et al. (2018, 2021), which demonstrate that firms

with higher leverage prefer to adopt more dispersed maturity structures. Similarly, we

reveal that such firms tend to opt for shorter call protection periods to increase call date
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numbers.

Third, our paper contributes to the discussion on how financial flexibility affects debt

maturity decisions. Traditionally, firms with higher leverage that can only set one matu-

rity date at issuance might extend the term to maturity to mitigate rollover risk (Diamond,

1991).9 Financial flexibility significantly changes this scenario however, allowing firms to

hedge against rollover risk more effectively, which in turn lowers bankruptcy costs and

enhances the value of levered firms. Childs et al. (2005) and DeMarzo and He (2021)

explain that the ability to adjust leverage favors the selection of short-term bonds, as

more frequent debt repricing and refinancing help retain value increases for shareholders.

Similarly, our analysis of callable bonds shows that the timing flexibility provided by

predetermined call periods encourages earlier refinancing and positions effective maturity

dates earlier in these periods. This insight aligns with the dynamics depicted in Figure 1,

Panel A, indicating that call protection lengths are a more precise measure of a bond’s

effective maturity.

Lastly, our paper contributes to the discourse on the widespread use of callable

bonds (Chen et al., 2010; Booth et al., 2014; Becker et al., 2024) as we compare them

with short-term non-callable bonds. Robbins and Schatzberg (1986) suggest that short-

term non-callable and long-term callable bonds can act as perfect substitutes to manage

conflicts between shareholders and bondholders. However, callable bonds provide distinct

advantages that enhance their appeal. Firstly, they simplify fundraising by appealing

to major investors like insurance companies that prefer long-term bonds to align with

their liabilities and reduce exposure to interest rate risks (Butler et al., 2022). Secondly,

our model underscores that callable bonds offer long-term financing with the flexibility

of early refinancing, enabling issuers to manage agency conflicts effectively without the

significant risks associated with rollover.10

9This positive relationship between firm leverage and stated maturity is empirically confirmed by
several earlier studies, such as Barclay and Smith (1995), Stohs and Mauer (1996), Johnson (2003), and
MacKay (2003).

10This implies that insurance companies should pay more attention to call protection length rather
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The rest of the paper is structured as follows. In Section 2, we introduce our theo-

retical framework for investigating the optimal choice of call protection length, as well as

introduce our backward-recursive pricing algorithm grounded in the tree-based method.

In Section 3, we describe our bond-level and firm-level data and elaborate upon our es-

timation procedure for the variables that characterize these datasets. Additionally, we

also outline how our model parameters are calibrated by using these data. Next, us-

ing our calibrated model, we analyze the choice of call protection length and how debt

refinancing timing relates to this choice in Section 4. Moreover, we study the welfare im-

plication of strategically using callable bonds by comparing interest costs of refinancing

with callable bonds to those of rolling over shorter-term non-callable bonds. After we

discuss our evidence on the predictions derived from our model in Section 5, we conclude

in Section 6.

2 Model

We build our theoretical framework on the structural credit risk model by Leland and Toft

(1996),11 incorporating a connection between endogenous default and early refinancing

actions triggered by callable bonds. Specifically, a firm can only announce a call after

a pre-established call protection period expires. Due to analytical challenges posed by

the free boundary problem in valuing debt and equity within this context, we develop a

backward-recursive tree-based algorithm. This algorithm, which expands upon the state-

transition forest concept introduced by Liu et al. (2016), allows us to numerically address

valuation complexities.

Our structural model setup, which adopts a more nuanced approach to debt maturity

to reflect real-world lumpiness, is outlined in Section 2.1. Section 2.2 then delves into a

than the stated maturities of callable bonds when constructing their portfolios, since bonds’ real lifespan
tends to be closer to the protection length. The choice of callable bonds with short call protection periods
helps alleviate issuers’ rollover risk as well as raises investors’ reinvestment risk.

11This model setting is generic and applies to both financial and non-financial firms, as in He and
Xiong (2012b) and Della Seta et al. (2020).
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firm’s default and (early) refinancing decisions, including how a firm selects call protection

length. We outline the construction of our forest structure in Section 2.3, providing a

detailed procedural explanation in Appendix A.1, as well as a robustness check.

2.1 Contingent Claims under a Structural Model with Lumpy

Debt Maturity

A structural model specifies the evolution of a firm’s asset value and treats equity and debt

as contingent claims on a firm’s assets. We follow He and Xiong (2012b) by supposing

that the asset value of an all-equity firm at time t, Vt, follows a lognormal diffusion process

under the risk-neutral probability measure:

dVt

Vt

= (r − q)dt+ σdz, (1)

in which the non-negative constant r and q denote the interest rate and the payout

ratio, respectively. The firm uses its available cash flow at time t, qVtdt, to first fulfill

contractually-obligated debt payments, and the remaining value (if any) is distributed to

the firm’s shareholders as dividends.12 If the cash payout cannot fulfill the debt obligation,

then the firm will either issue new equity to cover the deficit or announce default as the

deficit surpasses the equity value (Chen, 2010). The firm value volatility σ reflects the

firm’s business risk (Merton, 1974) and is set to a positive constant, as Fan and Sundaresan

(2000) argue that a firm (or its shareholders) cannot alter business risk arbitrarily due

to the presence of restrictive bond covenants. dz denotes a standard Brownian motion,

which represents random shocks to a firm’s fundamental. As in He and Xiong (2012b), a

firm’s fundamental is reflected by Vt.

When modeling contractually-obligated debt payments on a bond with a finite ma-

12This setting implies that the firm does not hold cash reserves, as in Chen (2010). It enables us to
eliminate the influence of the flexibility in adjusting cash holdings for hedging against rollover risk. By
keeping more cash, a firm can mitigate its exposure to rollover risk due to market illiquidity (Bolton
et al., 2011; Harford et al., 2014).
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turity, many existing theoretical frameworks, such as He and Xiong (2012b) and Dangl

and Zechner (2021), assume that the bond’s principal is amortized at a constant rate over

time. Instead, our framework follows Geelen (2016) and Chen et al. (2021) in considering

the setting of lumpy debt maturity, which signifies that the principal will simultaneously

mature on the stated maturity date. This feature is crucial in relating observed bond ma-

turities with associated default risk due to its prevalence in real-world observations (Choi

et al., 2018).

We consider the capital structure composed of equity, a T -year callable bond with

a P -year call protection (P ∈ (0, T ]), and a shorter-term T/m-year non-callable bond

(m > 1), denoted by Ec, CBc, and SBc, respectively. The superscript “c” indicates the

inclusion of a callable bond in the capital structure. Their values, on the other hand, are

denoted by Ec (Vt, t), CBc (Vt, t |P, T ), and SBc (Vt, t |T/m ), for which the parameters

following the vertical bar represent the lengths of bond maturities and the call protection,

respectively, as determined right before their issuance. The firm can only call the CBc

back at time t after the expiration of the call protection (i,e. t ∈ [P, T ]) using the effective

call price equal to the scheduled call price Kt plus accrued interest. Typically, Kt is set

to the bond face value plus a call premium equal to a certain percentage of one year’s

interest payment (Tewari et al., 2015; Powers, 2021). We let FL (FS) be the face value,

and CL (CS) be the continuous coupon rate for the CBc (SBc). The total levered firm

value at t = 0, V L.c
0 , is then expressed as:

V L.c
0 = Ec (V0, 0) + SBc (V0, 0 |T/m) + CBc (V0, 0 |P, T ) . (2)

A callable bond grants its issuer the flexibility to adjust debt refinancing timing. To

distinguish between refinancing scenarios that allow for timing flexibility and those that

do not, we compare the interest costs of refinancing with callable bonds to those of rolling

over shorter-term non-callable bonds. We consider another firm with a two-bond debt
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structure composed of P -year and T/m-year non-callable bonds. The firm’s total levered

firm value at t = 0, V L.s
0 , is expressed as:

V L.s
0 = Es (V0, 0) + SBs (V0, 0 |T/m) + SBs (V0, 0 |P ) , (3)

in which the superscript “s” is attached to contingent claims in the capital structure

without any callable bond when they are initially issued. T/m-year SBs is identical to

SBc in Equation (2) in all other aspects. We align the stated maturity of another SBs

with call protection length P of the CBc in light of our observation from Figure 1. This

figure shows that over the past two decades, the average call protection length (depicted

in blue in Panel A) is close to the average stated maturity of non-callable bonds (shown

in cyan in Panel B). For the purposes of this paper, we pinpoint two targets. First, we

aim to quantify the impact of stating a call period rather than just a single maturity date

upon issuance by comparing the coupon rate of CBc in Equation (2) with that of the

P -year SBs in Equation (3). Second, we aim to examine how this impact influences other

bonds in the same debt structure by comparing the difference in coupon rates between

the two otherwise identical T/m-year SBc and SBs.

In our analysis, we consider three types of market frictions as in Childs et al. (2005).

First, costs for raising new bonds are assumed to be γ proportion of the bonds’ market

value, in which γ ∈ (0, 1).13 When employing bonds, the firm earns tax shield benefits

while also facing bankruptcy costs. When the firm remains solvent, its coupon payments

benefit from a tax-deductible rate τ , in which τ ∈ (0, 1). However, when the firm goes

bankrupt and undergoes liquidation, a fixed proportion ω of the firm’s asset value Vt is

forfeited as liquidation expenses, in which ω ∈ (0, 1).

13For simplicity’s sake, we do not consider equity issuance costs when new equity is issued to cover
debt obligation, as in He and Xiong (2012b) and Dangl and Zechner (2021).
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2.2 Decision on Default, Early Refinancing, and the Call Pro-

tection Length

To ensure a fair comparative analysis between refinancing using callable bonds and using

shorter-term non-callable bonds, we assume that a firm employs a debt structure with

two bonds of equal seniority and follows “constant book leverage policy” as in He and

Milbradt (2016), so the firm may isolate any other direct dilution motives to change

future book leverage and bonds’ stated maturities (Brunnermeier and Oehmke, 2013).

This assumption also enables us to eliminate the influence of the flexibility in adjusting

firm leverage (Childs et al., 2005; DeMarzo and He, 2021) and concentrate solely on the

impact of timing flexibility provided by call provisions. Therefore, any retired bond is

refinanced by issuing a new identical bond. Specifically, a callable bond can be refinanced

early using an otherwise identical bond after the expiration of the retired callable’s call

protection period.14 A non-callable bond will be refinanced using an otherwise identical

bond only on its stated maturity date. With this debt flotation setting, we use m in

Equations (2) and (3) to represent the frequency at which the firm rolls over the SBc and

SBs. A larger (smaller) m given T implies a shorter (longer) maturity of the non-callable

and hence a higher (lower) rollover frequency.

After bonds are issued, a firm will choose the time to default that best serves share-

holders’ interests. We follow He and Xiong (2012b) and He and Milbradt (2014) and

assume that shareholders would bear gains and losses from refinancing activities. Specif-

ically, if funds raised from issuing a new bond exceed (fall short of) the amount needed

to repay the retired bond, then the resulting profit (deficit) will be allocated to (be cov-

ered by) shareholders as dividends (through additional equity issuance). The firm will

14Theoretical frameworks, such as Mauer (1993), Sarkar (2001), and Sarkar and Hong (2004), assume
that a perpetual callable bond can be refinanced early with an otherwise identical non-callable bond. On
the other hand, models such as Goldstein et al. (2001) and Chen (2010) allow for early refinancing of
perpetual callable bonds with other perpetual callables. In the models of Chen et al. (2021) and Dangl
and Zechner (2021), they further consider early refinancing activities by using non-perpetual callables.
However, all of them ignore the presence of call protection periods when firms make their early refinancing
decisions.
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announce default whenever its debt repayment cannot be fulfilled via equity financing to

maximize its shareholders’ value (Chen, 2010). With this default policy, the CBc issuer

will also choose an earlier time to refinance its outstanding callable bond using another

identical bond to maximize its shareholders’ value.15 Since the call protection length

is stipulated right before the bond issuance, the debt refinancing call should only occur

after the expiration of the period. In particular, the firm will choose the period length

P ∗ ∈ (0, T ] to maximize the initial total levered firm value V L.c
0 in Equation (2). The

expected effective maturity of this T -year CBc is defined as the expected value of the

time to refinance the bond, κC ∈ [P ∗, T ], under the risk-neutral probability measure.16

Our numerical framework allows us to explore the refinancing decision κC depending on

the predetermined call protection length under the settings of the constant book lever-

age policy and the lumpy debt maturity. Our framework also enables us to demonstrate

how, in terms of interest costs, refinancing with callable bonds is more cost-effective for

high-leverage firms compared to using short-term non-callable bonds.

2.3 Numerical Implementation

2.3.1 Evaluating Equity and Bonds

To the best of our knowledge, numerous existing models, such as Chen et al. (2021) and

Dangl and Zechner (2021), account for a callable debt; however, they overlook the call

protection period, rendering the timing of early refinancing independent of the period’s

duration. Since equity and bonds are viewed as contingent claims on their issuer’s assets,

we approach this issue by employing the forest structure pioneered in Liu et al. (2016)

to simulate the asset value process of Equation (1) and feature lumpy debt maturity, as

15In the models proposed by Jarrow et al. (2010) and Ma et al. (2023), debt default is determined
exogenously through a one-time Poisson process. However, this approach does not capture the interaction
between call and default decisions, which has been highlighted by Acharya and Carpenter (2002) and
Kim and Stock (2014).

16In other words, the optimal call protection length P ∗ is chosen to align the refinancing decision κC

with the policy of maximizing the initial total levered firm value. Fischer et al. (1989) refers to this
refinancing decision governed by predetermined call provision terms as the first best decision.
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in Figure 2. We further denote the SBc in Equation (2) (SBs in Equation (3)) by SBc
dm

(SBs
dm
), where the subscript represents that the non-callable bond’s stated maturity date

is t = dm. In addition, we denote the CBc by CBc
dc, dn

in which the two subscripts dc

and dn represent the callable bond’s first call and stated maturity dates, respectively.

Moreover, we denote the Ec (Es) by Ec
dm, dn

(Es
dm, dn

) to indicate the levered equity when

the firm employs the debt structure with two bonds due on dates dm and dn, respectively.

A degenerative version of the forest, a CRR binomial tree (Cox et al., 1979) with a

length of time step ∆t = T/6 in Panel A, can discretely simulate the firm value evolution

of Equation (1) using the upper (downward) branch probabilities Pu (Pd) over time steps.

The equity and non-callable bond values on the stated bond maturity date depend on the

firm values for the terminal nodes of the tree. Their values at the root node can be found

using backward induction in the tree. To tackle the rollover of non-callable bonds, we

extend the tree in Panel A into the one in Panel B. Moreover, a typical forest composed

of several CRR trees in layers are displayed in Panel C; each tree reflects the firm value

evolution over a debt structure including a T -year callable bond with one permissible

call date. We exploit the transition between two adjacent trees in the forest to model

uncertain early refinancing of outstanding callable bonds. For example, the first (second)

layer black (red) tree reflects the debt structure including the T -year CBc
T/2, T (CBc

T, 3T/2)

that can be called at year T/2 (T ) and matures at t = T (3T/2). The transition from

the black tree to the red one signifies the scenario in which the CBc
T/2, T is refinanced

early through the proceeds from raising the CBc
T, 3T/2. Two adjacent tree structures that

overlapped in the same time period simulate the values of all contingent claims based on

whether or not an early refinancing is conducted. This approach enables us to pinpoint

the best refinancing policy for a specific call date, such as node I at t = T/2 in the first

layer tree. The extension to include multiple call dates during the call period will be

detailed in Appendix A.1.2.
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Bonds with Lumpy Maturities

To sketch our numerical implementation, we start by considering the debt structure de-

scribed in Equation (3). For ease of illustration, we let m = 2 and P = T/2. That

is, the debt structure contains two non-callable bonds; CS and CL (FS and FL) are the

coupon rates (face values) of the two bonds, which have the same stated maturity of

T/2 years. The subscript of SBs denotes that the non-callable bonds will mature on the

date of t = T/2, and the bond issuer does not roll over the two bonds on their matu-

rity dates, as illustrated in Panel A. Thus, the two SBs
T/2 and equity Es

T/2, T/2 can be

evaluated by simply using a standard backward induction procedure as follows. Under

the setting of lumpy debt maturity, SBs
T/2 holders (issuer) will receive (should repay)

a coupon (after-tax coupon) plus face value on the maturity date of t = T/2 and will

receive (should repay) a coupon (after-tax coupon) before the maturity date. Once these

contractually-obligated payments cannot be fulfilled, the issuer announces default. After

deducting liquidation expenses at a ratio of ω, the firm’s residual assets are directed to

SBs
T/2 holders. We take, for example, the terminal node D at t = T/2. If the firm’s asset

value at node D is denoted by υ(D), then the levered equity value is expressed as:

Es
T/2,T/2(υ(D), T/2) = max

(
υ(D) + δT/2 − (1− τ)(CSFS + CLFL)∆t− (FS + FL) , 0

)
, (4)

in which the δt represents the cash payout for debt repayments and dividends. We follow

Broadie and Kaya (2007) and set δt = Vte
q∆t − Vt; VT/2 = υ(D) in this example. The

bond value is then expressed as:

SBs
T/2(υ(D), T/2 |T/2) =


FM + CMFM∆t if Es

T/2,T/2(υ(D), T/2) > 0,

(1− ω)(υ(D) + δT/2)× αM otherwise,

(5)

in which the subscript M can be S or L; the αM equals FM/(FS + FL) since the two

non-callable bonds are equally senior during the liquidation process.
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Once equity and bond values for terminal nodes of the tree are determined, their values

for all intermediate nodes can be calculated using the backward induction procedure as

follows. The equity value at time t is evaluated using the following equation:

Es
T/2,T/2(Vt, t) = max

(
δt − (1− τ)(CSFS + CLFL)∆t︸ ︷︷ ︸

U: cash dividends or
new equity issuance

+Es
T/2,T/2(Vt+ , t

+)︸ ︷︷ ︸
X1

, 0

)
. (6)

In this equation, the term X1 represents the expected present equity value right after time

t. In addition, a positive value of U indicates cash dividends distributed to shareholders as

the cash payout δt surpasses the after-tax coupon payment. Conversely, a negative value

represents a shortfall in the after-tax coupon payment, which necessitates new equity

issuance. If the term X1 equity value cannot fulfill the shortfall (i,e., U+X1 < 0), then

the firm announces default, and the shareholders receive nothing, as in Chen (2010). With

this default policy, the bond value is:

SBs
T/2(Vt, t |T/2) =


CMFM∆t+ SBs

T/2(Vt+ , t
+ |T/2)︸ ︷︷ ︸

X2

if Es
T/2,T/2(Vt, t) > 0,

(1− ω)(Vt + δt)× αM otherwise,

(7)

in which the term X2 refers to the expected present value of future cash flows received

by the bondholder. We take, for example, the equity value Es
T/2,T/2(υ(A), T/3) and the

bond value SBs
T/2(υ(A), T/3 |T/2) for node A at t = T/3. They can be calculated using

Equations (6) and (7) with the terms X1 and X2 being evaluated by the standard backward

induction as:

e−r∆t

(
Pu × Es

T/2,T/2(υ(B), T/2) + Pd × Es
T/2,T/2(υ(D), T/2)

)
, (8)

e−r∆t

(
Pu × SBs

T/2(υ(B), T/2 |T/2) + Pd × SBs
T/2(υ(D), T/2 |T/2)

)
, (9)

respectively. Finally, the equity and bond values for the root node at t = 0 can be
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computed by mimicking the expression in Equations (8) and (9).

Rollover of Non-Callable Bonds

In Panel B, we model an otherwise identical firm adhering to the constant book leverage

policy by repeatedly rolling over the two T/2-year non-callable bonds until we reach

t = 2T in an extended tree framework. Specifically, the two SBs
T/2 will be repaid at

t = T/2 through the proceeds from raising two otherwise identical SBs
T that expire at

t = T , and so on until t = 2T . Since the retired and newly-issued bonds are otherwise

identical, shareholders would bear rollover gains or losses if funds raised from issuing a

new bond exceed or fall short of the amount needed to repay the retired bonds. A firm

will thus announce default if rollover losses exceed the equity value plus the cash payout.

To evaluate the Es
2T,2T and the two SBs

T/2 at t = 0 using a 2T -year time span, we extend

the T/2-year tree in Panel A into the 2T -year one in Panel B, so we may consider the debt

rollover on dates of t = T/2, T , and 3T/2. The equity and bond values for the terminal

nodes of this 2T -year tree can be computed as those of the tree in Panel A. We take, for

example, the terminal node H at t = 2T . The equity and bond values, Es
2T,2T (υ(H), 2T )

and SBs
2T (υ(H), 2T |T/2), can be calculated by mimicking the expression in Equations (4)

and (5). Their values on the SBs
2T issue date, such as those for node G at t = 3T/2, can

be determined using backward induction in the orange tree in Panel B, similar to the

procedure used to find the values of Es
T/2, T/2 and SBs

T/2 for the root node in Panel A.

The impact of debt rollover on equity and bond values is illustrated as follows. We

use node E at t = T/2 as an example and compare it with the scenario in Equation (4)

where there is no rollover. The evaluation procedure at nodes F and G can follow this
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example. The equity value considering rollover is expressed as:

Es
T/2,T/2(υ(E), T/2)

= max

(
Es

T,T (υ(E), T )︸ ︷︷ ︸
Y1: levered equity value when
the two SBs

T are outstanding

+δT/2−(1− τ)(CSFS + CLFL)∆t︸ ︷︷ ︸
after-tax coupon payments

to the two SBs
T/2

Y: rollover gain and loss︷ ︸︸ ︷
−(FS + FL)︸ ︷︷ ︸
repayment of the

two maturing SBs
T/2

+(1− γ)
(
SBs

T (υ(E), T |T/2) + SBs
T (υ(E), T |T/2)

)
︸ ︷︷ ︸

Y2: proceeds from raising the two new SBs
T

, 0︸︷︷︸
default

)
.

(10)

The red terms represent values of the equity and newly-issued bonds that can be deter-

mined using backward induction in the red tree. If the firm does not engage in rollover,

then term Y2 can be omitted, and term Y1 simplifies to υ(E), thereby reducing Equa-

tion (10) to Equation (4). The term Y can be positive or negative to reflect the rollover

gain or loss born by shareholders. Since the two newly-issued SBs
T and the retired SBs

T/2

are otherwise identical, a lower υ(E) reveals a relatively poor firm’s fundamental, which

leads to smaller values of newly-issued bonds and a greater rollover loss (i.e., smaller

term Y) that collectively reduces equity value and precipitates debt default. The value

of the maturing SBs
T/2 at node E can then be computed by mimicking the expression

in Equation (5). By working backward in the 2T -year tree until t = 0, we can find the

initial values of Es
T/2, T/2 and the two SBs

T/2 for the root node if we assume the three debt

rollover cycles depicted in Panel B.

Refinancing with Callable Bonds

In Panel C, we consider a firm with the debt structure described in Equation (2). Also,

we let m = 2 and P = T/2; this firm is thus identical to the one in Panel B with a

single exception of the debt structure. Again, the T/2-year non-callable bond SBc
T/2 and
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T -year callable bond CBc
T/2, T will be evaluated using a 2T -year time span. For ease of

illustration, the firm is only allowed to either call and refinance CBc
T/2,T early at t = T/2

or just roll over the callable at t = T with an otherwise identical bond, and so on until

t = 2T . We exploit backward induction in the forest in Panel C to handle the evaluation.17

Since T -year callable bonds are evaluated using a 2T -year time span, the maturing SBc
3T/2

and CBc
T,3T/2 at t = 3T/2 in the second layer red tree will be repaid through the proceeds

from raising two T/2-year SBs
2T , which are identical to those in Panel B. Moreover, the

SBc
3T/2 and CBc

3T/2, 2T at t = 3T/2 in the third layer green tree will also be refinanced

with the two SBs
2T .

18 The values of the two SBs
2T on their issue date of t = 3T/2 can be

computed using backward induction in the fourth layer orange tree, which is identical to

the orange one in Panel B.

Next, we focus on the terminal nodes at t = T in the first layer black tree, so we

may evaluate equity Ec
T, T and the two maturing bonds, SBc

T and CBc
T/2, T . We take

node K for example. Since the firm will the SBc
T and CBc

T/2, T through proceeds from

raising otherwise identical SBc
3T/2 and CBc

3T/2, 2T , the equity value is expressed as follows

17If the call date at t = T/2 is removed, T -year CBc
T/2,T is reduced to a T -year non-callable. We

can also use this forest structure to evaluate the contingent claims within a capital structure comprising
two non-callable bonds with different stated maturities. This method is employed for pricing in Panel B
when m and P are set to other values (see Appendix A.1.2). For brevity’s sake, we only go through the
callable bond case here.

18Since T -year callable bonds are evaluated using a finite time span equal to N × T years, we note
that these bonds cannot always be refinanced (early) with otherwise identical ones. In this illustrative
example, it will occur at t = 3T/2 when N = 2. However, the impact of this ad hoc setting on the initial
values of SBc

T/2 and CBc
T/2, T is trivial when N is great enough. Our robustness check in Appendix A.1.3

confirms this argument.
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to reflect the rollover:

Ec
T,T (υ(K), T )

= max

(
Ec

3T/2,2T (υ(L), T )︸ ︷︷ ︸
levered equity value when
SBc

3T/2
and CBc

3T/2,2T

are outstanding

+δT −(1− τ)(CSFS + CLFL)∆t︸ ︷︷ ︸
after-tax coupon payments
to SBc

T and CBc
T/2,T

−(FS + FL)︸ ︷︷ ︸
repayment of
the maturing

SBc
T and CBc

T/2,T

+(1− γ)
(
SBc

3T/2(υ(L), T |T/2) + CBc
3T/2,2T (υ(L), T |T/2, T )

)
︸ ︷︷ ︸

proceeds from raising the new
SBc

3T/2
and CBc

3T/2,2T

, 0︸︷︷︸
default

)
.

(11)

This equation is similar to Equation (10). The green terms represent the values of the

equity and newly-issued bonds that can be determined using backward induction in the

third layer green tree. This backward induction procedure enables these green terms at

node L to account for refinancing events occurring at t = 3T/2; such an event could be

either the one in which the maturing SBc
3T/2 is repaid alone by issuing the SBc

2T (i.e.,

proceed to the light green tree), or the one in which both the SBc
3T/2 and CBc

3T/2, 2T

are refinanced with the two SBs
2T (i.e., transfer to the orange tree). The values of the

maturing CBc
T/2, T and SBc

T at node K are then expressed based on the equity value as:

CBc
T/2,T (υ(K), T |T/2, T ) =


FL + CLFL∆t if Ec

T,T (υ(K), T ) > 0,

(1− ω)(υ(K) + δT )× αL
otherwise;

SBc
T (υ(K), T |T/2) =


FS + CSFS∆t if Ec

T,T (υ(K), T ) > 0,

(1− ω)(υ(K) + δT )× αS
otherwise,

(12)

in which αL and αS equals FL/(FS + FL) and FS/(FS + FL), respectively, due to their

equal seniority during the liquidation process.
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Working backward from the terminal nodes of the first black layer tree at t = T to the

intermediate nodes at t = T/2, we now evaluate equity and bonds based on whether or not

CBc
T/2, T is refinanced early. We begin with node I: according to the fundamental υ(I),

the firm will either choose to refinance CBc
T/2, T early and roll over SBc

T/2 simultaneously,

roll over SBc
T/2 alone, or declare default. Since the optimal decision serves shareholders’

best interests, the equity value is expressed as the maximal values of these three choices

as follows:

Ec
T/2,T (υ(I), T/2)

= max

(
Ec

T,3T/2(υ(J), T/2)︸ ︷︷ ︸
levered equity value when

SBc
T and CBc

T,3T/2

are outstanding

+ δT/2 − (1− τ)(CSFS + CLFL)∆t

Z1: gain or loss from rollover and early refinancing︷ ︸︸ ︷
−(FS +KT/2)︸ ︷︷ ︸

repayment of
SBc

T/2
and CBc

T/2,T

+(1− γ)
(
SBc

T (υ(J), T/2 |T/2) + CBc
T,3T/2(υ(J), T/2 |T/2, T )

)
︸ ︷︷ ︸

proceeds from raising the new
SBc

T and CBc
T,3T/2

,

Ec
T,T (υ(I), T/2)︸ ︷︷ ︸

levered equity value when
SBc

T and CBc
T/2,T

are outstanding

+ δT/2 − (1− τ)(CSFS + CLFL)∆t)

Z2: rollover gain or loss︷ ︸︸ ︷
−FS︸︷︷︸

repayment of
the maturing

SBc
T/2

+(1− γ)SBc
T (υ(I), T/2 |T/2)︸ ︷︷ ︸

proceeds from raising
the new SBc

T

, 0︸︷︷︸
default

)
.

(13)

The first piece of equity value refers to the one when early refinancing is conducted;

CBc
T/2, T is called back at the call price KT/2 plus accrued interest.19 The three red terms

represent the values of the equity and newly-issued bonds that can be determined using

backward induction in the second layer red tree. The second piece refers to the equity

19υ(I) is equal to υ(J) since the firm value evolution is a lognormal diffusion process, although the
two tree nodes correspond to two different debt structures. The same holds for υ(K) and υ(L) in
Equation (11).
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value when the firm chooses to keep CBc
T/2, T ; SB

c
T/2 is repaid alone through proceeds from

raising SBc
T . The two gray terms represent the values of equity and the newly-issued bond

that can be, on the other hand, determined using backward induction in the first layer

gray tree. The choice between the first and second pieces illustrates the firm’s flexibility

in choosing the optimal time to refinance CBc
T/2, T , thus minimizing losses (or maximizing

gains) as represented by terms Z1 and Z2 from these activities. Compared to the equity

value described by Equation (10) in Panel B, which refers to the rollover scenario, this

timing flexibility enhances equity value and delays a default announcement. Consequently,

it helps the firm that seeks to minimize bankruptcy costs related to refinancing activities,

thus increasing the overall levered firm values.

Assuming the link between endogenous default and early refinancing action as de-

scribed earlier, the value of CBc
T/2, T is determined based on equity value as:

CBc
T/2,T (υ(I), T/2 |T/2, T ) =



CLFL∆t+KT/2
if Ec

T/2,T (υ(I), T/2) > 0

and call is announced,

CLFL∆t+ CBc
T/2,T (υ(I), T

+/2 |T/2, T )︸ ︷︷ ︸
X3

if Ec
T/2,T (υ(I), T/2) > 0

and call is not announced,

(1− ω)(υ(I) + δT/2)× αL otherwise.

Here, the term X3 refers to the expected present bond value right after t = T/2, and can be

determined using backward induction in the first layer gray tree. In addition, since SBc
T/2

is maturing at node I, it can be evaluated by mimicking the expression in Equation (12).

Finally, by working backward again from the intermediate nodes at t = T/2 to the root

node in the first layer tree, we can find the initial values of Ec
T/2, T , SB

c
T/2, and CBc

T/2, T ,

considering all related refinancing activities depicted in Panel C.

Our above backward induction procedure will be detailed in Appendix A.1.1. We can

achieve at least three extensions from the forest in Panel C without difficulty. The first
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one is from m = 2 into m > 2 to shorten the maturity of SBc and thus increase rollover

frequency. The second one is from using a 2T -year time span into using an NT -year

time span, in which N is sufficiently large and thus able to approximate the infinite time

horizon adopted by most structural credit risk models. The third one is from a single call

date into multiple call dates during the stipulated call period. These extensions will be

detailed in Appendix A.1.2. The robustness of our numerical implementation when we

use this tree-based method is confirmed by our quantitative results in Appendix A.1.3.

2.3.2 Estimating the Expected Effective Maturity for a Callable Bond

As we discussed earlier, the expected effective maturity of a callable bond is defined as the

expected duration until the bond is refinanced under the risk-neutral probability measure.

We estimate the expected effective maturity for the T -year callable bond CBc
T/2, T using

backward induction in the black CRR tree of the forest in Panel C. For ease of illustration,

we let EEMat(Vt, t) denote the expected remaining time to refinance the callable at time

t, given the firm’s asset value is Vt. Our goal is to determine EEMat(V0, 0), which is

the expected remaining time to refinance the callable at the root node of the forest. We

let CProb(Vt, t) denote the conditional probability that the callable will be refinanced

at or after time t. Starting at the terminal nodes of the black tree at t = T , we set

CProb(VT , T ) = 1 and EEMat(VT , T ) = 0 if the firm rolls over CBc
T/2, T on its stated

bond maturity T like node K. Conversely, if the firm announces default, then both

CProb(VT , T ) and EEMat(VT , T ) are set to 0.

When we work backward from the terminal nodes, the expected remaining time to

refinance the callable at any intermediate node is expressed as:

EEMat(Vt, t) =


0 if the bond is defaulted or refinanced,

∆t+NextEEMat(Vt+∆t, t+∆t)︸ ︷︷ ︸
X4

if the bond is outstanding.
(14)

Here, ∆t is the length of a time step for the CRR tree; for example, ∆t = T/6 in Figure 2.
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The term X4 indicates the expected value of the EEMat(Vt+∆t, t + ∆t), which is equal

to:

Pu × CProb(Vtu, t+∆t)

CProb(Vt, t)
EEMat(Vtu, t+∆t) +

Pd × CProb(Vtd, t+∆t)

CProb(Vt, t)
EEMat(Vtd, t+∆t).

Pu and Pd represent the branching probabilities in the CRR tree, while the parameters u

and d determine the potential states of the firm’s asset value. Specifically, from an initial

value Vt at time t, the firm’s asset value may either increase to Vtu or decrease to Vtd in

the next time step. Given EEMat(Vt, t) > 0 (i.e., the bond is outstanding at time t), the

denominator term is defined as follows:

CProb(Vt, t) = Pu × CProb(Vtu, t+∆t) + Pd × CProb(Vtd, t+∆t).

If EEMat(Vtu, t+∆t) or EEMat(Vtd, t+∆t) equals 0 due to early refinancing at time

t+∆t, then the corresponding numerator term CProb(Vtu, t+∆t) or CProb(Vtd, t+∆t) is

set to 1, as in node I of Panel C. Conversely, if EEMat(Vtu, t+∆t) or EEMat(Vtd, t+∆t)

equals 0 due to a default announcement, then CProb(Vtu, t+∆t) or CProb(Vtd, t+∆t)

is set to 0. Finally, we can calculate the expected remaining time to refinance the callable

bond at the root node by recursively applying Equation (14).

3 Data and Calibration

In this section, we first describe how we collect bond-level and firm-level raw data, and

then introduce the estimation procedure for variables characterizing our data. Finally,

we describe how our model parameters are calibrated, so we may capture the important

features of the collected data.
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3.1 Data

We use the Mergent Fixed Income Securities Database (Mergent FISD) for our bond-level

data. To focus on bonds subject to default risk, we exclude bonds issued by government-

sponsored entities. In addition, we only include bonds whose redemption effective dates

lie between their offering dates and stated maturity dates.20 If the bonds are callable,

we only consider the ones whose first call dates are set between their offering and stated

maturity dates. We supplement the data on first call dates in Mergent FISD with the

data from Bloomberg and the Securities Data Company (SDC) Platinum, following our

procedure in Appendix A.2.

To retrieve corresponding firm-level data, we match our collected bond issuers to the

firms in Compustat.21 We only consider firms having at least three consecutive annual

records in Compustat and three consecutive annual observations of public bonds out-

standing in Mergent FISD. Our final sample includes 5,148 U.S. firms and 80,743 firm-year

observations during the period 1990–2018. The sample covers 121,978 bonds, including

41,670 callable and 80,308 non-callable bonds.

To clearly illustrate the data characteristics and the relation between bond-level and

firm-level variables, we first denote the length of stated bond maturity (call protection) by

BondStaM (BondCProt), whose value is the time span in years between a bond’s offering

date and stated maturity date (first call date). In addition, we denote the length of

effective bond maturity by BondEffM, whose value is the time span in years between the

bond’s offering date and redemption effective date. The time span eliminated from the

original bond’s life due to early redemption, BondElim, can thus be defined as BondStaM−

BondEffM. For the sake of comparison, two relative measures BondCProtR (hereafter,

call protection ratio) and BondElimR (hereafter, elimination ratio) are further defined

20In our paper, we only consider those effective dates related to five action types as in Xu (2018): 1)
call, 2) repurchase, 3) tender offer, 4) refunded, and 5) mature. For more details on action types, see
Appendix A.2.

21The data matching procedure is detailed in Appendix A.3.
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as BondCProt/BondStaM and BondElim/BondStaM. A smaller BondCProtR refers to a

shorter call protection period. Similarly, a greater BondElimR implies an earlier bond

redemption. Finally, we denote a bond coupon rate in percentages by BondCoupon.

In Table 2, we compare the sample characteristics of callable bonds with those of

non-callables. The mean BondStaM of the callable bonds is longer than that of the non-

callables,22 which echoes argument of Robbins and Schatzberg (1986) that embedding

call provisions in bonds is a useful substitute for stating shorter bond maturities. We

note that the mean BondEffM of the callable bonds is 4.55 years, which is close to the

mean BondStaM of the non-callables (4.58 years). Furthermore, the median BondCProt

of the callable bonds is 2.98 years, which is also close to the median BondStaM of the

non-callables (3.01 years). On the other hand, the median ordinal rating of the callable

bonds is 8 (i.e., BBB+), while that of the non-callables is 5 (i.e., A+). This finding is

consistent with the observation of Brown and Powers (2020) that callable bonds have,

on average, poorer ratings than non-callable bonds. In addition, the mean number of

restrictive covenants for callable bonds is greater than that for non-callables, which also

echoes the finding of Billett et al. (2007) that covenant protection is increasing with bond

maturity.

Some of our firm-level variables are defined based on bond-level data as follows. If the

i-th firm had l bonds outstanding in year t, then the firm-level stated bond maturity in

years (coupon rate in percentages) is defined as:

FirmStaMi,t =
1

l

l∑
j=1

BondStaM i,t,j; (15)

FirmCouponi,t =
1

l

l∑
j=1

BondCouponi,t,j. (16)

22This characteristic is consistent with observations in Crabbe and Helwege (1994), Chen et al. (2010),
and Booth et al. (2014), but is inconsistent with those in Brown and Powers (2020). The key reason
for this inconsistency is that Brown and Powers (2020) only consider the bond sample with the stated
maturity of at least three years, and doing so may exclude many short-term non-callable bonds from their
dataset.
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We treat FirmCouponi,t as the proxy for interest costs on outstanding corporate bonds in

year t. Similarly, if i-th firm has lc callable bonds outstanding in year t, lc ≤ l, firm-level

call protection length is defined in ratio form as:

FirmCProtRi,t =
1

lc

lc∑
j=1

BondCProtRi,t,j. (17)

On the other hand, to measure how early a firm conducts bond redemption, we exploit the

length of time span eliminated from the length of stated bond maturity. This firm-level

measure FirmElimR is defined only when the premature redemption is conducted by the

i-th firm in year t as follows:

FirmElimRi,t =
1

le

le∑
j=1

BondElimRi,t,j, (18)

in which le ≤ l. Intuitively, a smaller FirmCProtRi,t refers to shorter call protection

periods for lc callable bonds outstanding in year t. Furthermore, a greater FirmElimRi,t

means that le bonds are redeemed earlier.

Table 3 reports our firm characteristics summary. Our sample firms have a median

FirmStaM of 10 years close to the median BondStaM of our collected callable bonds

and the benchmark setting in several studies, including Chen et al. (2021) and Dangl

and Zechner (2021). By observing the mean FirmCProtR, we find that, on average,

the outstanding callable bonds of a firm spend nearly half of their life in the form of

call protection. In Table 4, we further conduct univariate tests of differences in bond

characteristics depending on two proxies for rollover risk: 1) the leverage level, Leverage,

in Panel A, and 2) the level of debt in current liability (Cathcart et al., 2020), Curlia,

in Panel B. We find that high-leverage firms’ BondStaM is significantly longer than low-

leverage firms’, which corroborates the argument from Diamond (1991) and Childs et al.

(2005) that higher-leverage firms tend to increase their bonds’ stated maturities in order to

reduce the risk of experiencing debt rollover frequently. We also notice that high-leverage
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and high-curlia firms have significantly smaller BondEffM and BondCProt (BondCProtR),

as well as greater BondElim (BondElimR). This implies that these firms tend to issue

callable bonds with shorter call protection periods and conduct bond redemption earlier.

In particular, for 10-year callable bonds, those issued by high-leverage (high-curlia) firms

feature call protection periods that are, on average, 1.3 years shorter than those issued

by low-leverage (low-curlia) firms. Furthermore, high-leverage (high-curlia) firms tend to

redeem these bonds approximately 1.1 (0.8) years earlier than their low-leverage (low-

curlia) counterparts.

3.2 Calibration

To facilitate our quantitative analysis in the next section, we use the set of baseline

parameters for market condition and firm characteristics that are consistent with those

in the literature to calibrate standard structural credit risk models. The parameters for

debt structure are calibrated to capture the important features of our collected data.

By following the estimates of Dangl and Zechner (2021), we begin by assuming that

a firm’s income is taxed at a constant statutory rate τ = 30.6%, which is calibrated to

effective marginal tax rates as recorded in the Compustat MTR database. Second, since the

median ratings of our collected bonds are investment-grade (i.e., BBB+ for callable bonds

and A+ for non-callable bonds), we choose γ = 0.5% of the market value of a newly-issued

bond, as in He and Xiong (2012b) for A-rated bonds. Third, according to the estimates in

Huang et al. (2020), the average payout ratio for a sample of firms is 2.14%. In particular,

the average for A-rated firms is 2.02% and for BB-rated firms is 2.15%. Since the average

ordinal rating of our firm samples is close to 10 (i.e., BBB−), we choose q = 2% as in

He and Xiong (2012b) due to the small variation in payout ratio across different ratings.

Similarly, the estimates in Zhang et al. (2009) show that A-rated firms have an average

firm value volatility of 21% and that BB-rated firms have an average of 23%. Due to

the small variation in firm value volatility across different ratings, we choose σ = 21%
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since the average rating of our firm samples is close to the investment-grade. Fourth, the

bankruptcy cost ω is referred to Glover (2016), who estimates the mean (median) firm’s

cost of default with 45% (37%) of the firm’s asset value by applying a structural trade-off

model of a firm with time-varying macroeconomic conditions. We adopt ω = 37% as in

Dangl and Zechner (2021).

Other model parameters are specified according to our collected data. The stated

maturity of the callable bond T is set to 10 years, since the median BondStaM of our

collected callables is close to 10 years, as displayed in Table 2. We then set the risk-free

rate r to 4.61%, which is the median 10-year Treasury rate during 1990–2018 according

to data from the Federal Reserve Board’s H.15 Report. On the other hand, the parameter

m in Equation (2) represents the frequency at which the firm rolls over the shorter-term

T/m-year non-callable bond. Given T , a larger m results in shorter bond maturities,

thereby increasing the frequency and risk of rollover, while a smaller m decreases them.

We begin by setting m = 10, which establishes the non-callable bond’s stated maturity

at one year, following the baseline scenario used in He and Xiong (2012b). Since the

non-callable is relatively short-term, we calibrate the ratio of its face value FS to the

total debt face value FS + FL to the median Curlia of 8%, as shown in Table 3. For our

sensitivity analysis, we then choose m = 2 to represent a low rollover-risk scenario under

otherwise identical conditions. To estimate total debt face value, we first consider a firm’s

leverage as the ratio of the firm’s asset value to equity value. We then calibrate the firm’s

leverage to the median Leverage of 2.61, as shown in Table 3. If the firm’s current asset

value is normalized to V0 = 100 as in Leland and Toft (1996) and is treated as the sum of

the total debt face value and equity value as in Eom et al. (2004), then the total debt face

value is about 61.68, which coincides with the value chosen by He and Xiong (2012b).
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4 Quantitative Analysis

In this section, we examine the quantitative implications of our framework that we pro-

posed in Section 2 by using the parameters shown in Table 5. If not otherwise mentioned,

bond coupon rates CS and CL are set such that bonds issued at t = 0 are priced at par.

To facilitate our numerical implementation, the callable bond CBc in Equation (2) is

supposed to have discrete call dates; the embedded call provision enables the issuer to

announce a call at par once per year after the call protection period expires.23 In Sec-

tion 4.1, we first investigate the optimal duration of call protection and how subsequent

refinancing timing is influenced by this choice. We will estimate the expected effective

maturity of the CBc, which is defined as the expected remaining time to refinance the

callable at t = 0, based on all possible refinancing timing. In Section 4.2, we study how

sensitive the choice of call protection length and the expected effective maturity are to

variant firm leverages and rollover frequencies. In Section 4.3, we explore the welfare

implications of strategically using callable bonds by quantifying the difference in interest

costs between refinancing with callable bonds and rolling over shorter-term non-callable

bonds.

4.1 The Choice of Call Protection Length and Effective Matu-

rity

We start by examining the choice of call protection length and the subsequent refinancing

timing. Ceteris paribus, the price of a callable bond is lower when it has a shorter call

protection period. This is because the issuing firm has more call dates available to redeem

the callable early at predetermined call prices, which comes at the expense of bondholders.

23The setting of callable at par allows for a comparison between refinancing with callable bonds and
rollover of shorter-term non-callable bonds. Redemption at par narrows the comparison to exclusively
examine the nuances of debt refinancing, either solely on stated maturity dates without flexibility or
throughout stated call periods with multiple call dates. Chen et al. (2021) and Dangl and Zechner (2021)
also adopt this setting.
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When a callable bond is redeemed early at the call price below its prevailing market price,

the firm transfers the wealth from bondholders to shareholders. In the face of this call

risk, bondholders require a higher bond yield (i.e., call risk premium) for compensation

when the callable is issued at par. This requirement totally offsets the aforementioned

benefits shareholders might accrue from a shorter call protection period. Consequently,

the firm remains unaffected by the choice of call protection length.

If a firm must frequently access debt markets for refinancing, then specifying a shorter

call protection period will provide the firm with additional flexibility to adjust refinancing

timing during the call period. This timing flexibility prevents the need to issue new bonds

during times of financial strain, thus enhancing the firm’s creditworthiness. Although a

shorter call protection period strengthens the credit enhancement effect and thus decreases

bondholders’ required default risk premiums, it simultaneously raises required call risk

premiums. Therefore, to maximize the initial total levered firm value, the firm must

balance the benefits of increased timing flexibility and the costs related to call risk when

making the length arrangement.24 This benefit-cost trade-off is illustrated by the hump-

shaped curve in Panel A of Figure 3. It shows that assigning a 3-year call protection for a

10-year callable bond (denoted by the star O) is the optimal choice for the calibrated firm

if refinancing with callable bonds is conducted repeatedly. This assignment is close to the

median BondCProt of 2.98 years displayed in Table 2. If a shorter call protection period

is assigned to extend the call period, then the marginal costs from the incremental call

risk premiums will outweigh the marginal benefits from declining default risk premiums.

However, if a longer call protection period is assigned to shrink the call period, then the

marginal costs from the incremental default risk premiums will outweigh the marginal

24Note that the initial total levered firm value V L.c
0 in Equation (2) can be expressed as follows,

according to Leland (1994): V L.c
0 = V0 + TB(V0, 0) − BC(V0, 0), in which TB(V0, 0) represents the

present value of tax deductions from coupon payments (i.e., tax benefits), and BC(V0, 0) is the present
value of bankruptcy costs. By adjusting the call protection length, the firm modifies the required default
and call risk premiums. These changes affect the present values of tax benefits and bankruptcy costs,
leading the firm to select the optimal protection length to maximize its initial total levered value. In
a capital market with frictions, this strategy does not necessarily coincide with one that minimizes the
coupon rate of the 10-year CBc.
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benefit from declining call risk premiums.

By strategically determining call protection lengths, firms can avoid issuing new bonds

during financial downturns, thus minimizing bankruptcy costs associated with rollover

risks and enhancing overall firm value. This increased value motivates firms to initiate

refinancing earlier within call periods. Through proactive debt repricing and refinancing,

firms secure gains for their shareholders, mitigating the potential for risk-shifting and

underinvestment behaviors. As a result, effective maturity dates of callable bonds move

towards the beginning of call periods. Our calibrated framework well captures this re-

financing call policy. If timing flexibility is denoted by the distance between the dotted

and dashed lines in Panel B, the expected refinancing policy along with the flexibility is

illustrated by the significantly narrower (wider) gap between the expected effective ma-

turity and the call protection length (stated maturity). The two asymmetric gaps echo

the observed pattern of the effective maturity over the past three decades, as shown in

Panel A of Figure 1. Our baseline prediction for the expected effective maturity of a

10-year callable bond with a 3-year call protection is near 4.2 years (denoted by the star

O′), which is also close to the median BondEffM of 4.15 years displayed in Table 2. As

a result, instead of the stated maturity of a callable bond, the call-to-shorten strategy

makes its call protection length a more accurate measure of its real lifespan.

Our results in Figure 3 yield the following prediction:

Prediction 1. With the flexibility to adjust debt refinancing timing during a call

period, firms tend to conduct early refinancing near the beginning of the predetermined

call period.25

25This prediction seeks to explain observations post-1990, since we construct our calibrated model by
primarily using data collected from that year onwards.
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4.2 The Choice of Call Protection Length and Effective Matu-

rity Concerning Variant Rollover Risk

We next examine how choices of call protection length and effective maturity are affected

by different levels of firms’ exposure to rollover risks. Throughout our analysis, we use firm

leverage (proxied by total debt face value FS +FL) and rollover frequency m as indicators

of risk, as in Childs et al. (2005) and He and Xiong (2012b). That is, the exposure to

rollover risk increases as the total debt face value (rollover frequency) increases, ceteris

paribus. Panel A of Figure 4 plots the optimal lengths of call protection over total debt

face values for two different levels of rollover frequency. We observe that a firm with

very low leverage tends to issue non-callable bonds due to minimal exposure to rollover

risk. The firm chooses to align protection length with the stated maturity, since the costs

of using callable bonds are greater than the benefits of moderating rollover risk via the

callables. As total debt face value increases from 35 to over 40, the firm with rollover

frequency m = 10 issues callable bonds.26 Moreover, since the benefits of assigning

a shorter call protection period increase at a faster rate than costs when rollover risk

becomes prominent, the firm tends to choose a shorter protection length as its leverage is

higher. We observe that the optimal protection length decreases from 5 to 1 years as the

total debt face value increases from 40 to 85.27 This decreasing pattern is less pronounced

for the firm with rollover frequency m = 2 due to mild rollover risk. These results not

only echo differences in bond characteristics, BondCProt and BondCProtR in Table 4,

but also confirm that the desire for precautionary management of rollover risk motivates

26Chen et al. (2010) also identify this fact, but their focus lies in choosing whether to issue a callable or
non-callable bond and how this decision relates to a firm’s investment risk. In their numerical analysis,
they argue that a high-leverage firm tends to issue a callable bond because the embedded call provision
provides the flexibility to early retire the callable through internal funds. Doing so enables the firm
to avoid the risk of having to repay the bond during a weak financial state due to a bad investment
outcome. Instead of rollover risk, their framework targets at debt repayment risk arising from investment
uncertainty.

27Perhaps surprisingly, the quantitative analysis indicates that choosing 6-year to 9-year call protection
periods is suboptimal for a 10-year callable bond. That is, as firms issue callable bonds, their arrangement
for call period length is at least 50% of the entire stated bond maturity. This result is actually supported
by the data, except in the cases for which the samples include bonds with make-whole call provisions.
Figure 3 in Powers (2021) also shows that call protection length rarely exceeds half of a bond’s life.
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the choice for shorter call protection periods (longer call periods).

Panel B illustrates the expected effective maturity corresponding to each optimal

length of call protection length in Panel A. Due to timing flexibility, callable bonds are

likely to be refinanced close to the start of predetermined call periods, as captured in

Prediction 1. Consequently, as expected, there is a more pronounced disparity between

expected effective maturity and stated maturity, especially when shorter call protection

periods are incorporated. The disparity reflects the observed connection between high

rollover risk and frequent debt refinancing (Ma et al., 2023).

Our results in Figure 4 yield the following prediction:

Prediction 2. With higher exposure to rollover risk, firms tend to choose callable

bonds with shorter call protection periods.

Prediction 3. The disparity between effective and stated maturity is more pronounced

as firms choose shorter call protection periods.

4.3 Welfare Implications of Strategically Using Callable Bonds

Finally, we examine the welfare implications of strategically using callable bonds by com-

paring the interest costs of refinancing with callable bonds to those of rolling over shorter-

term non-callable bonds. Two otherwise identical firms are considered. The first firm’s

debt structure comprises a 10/m-year SBc and a 10-year CBc with a P ∗-year call pro-

tection, as expressed in Equation (2), and P ∗ is the optimal protection length under a

given total debt face value. The other comprises a 10/m-year SBs and a P ∗-year SBs,

as expressed in Equation (3). We align the stated maturity of the latter SBs with the

protection length P ∗ based on trends over the past two decades, as illustrated in Fig-

ure 1. We then pinpoint two goals. First, we aim to quantify the impact of stating a call

period rather than just a single maturity date upon issuance by comparing the coupon

rate of the CBc with that of the P ∗-year SBs. Second, since using CBc can enhance the
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firm’s creditworthiness, we aim to examine how this effect influences the coupon rate of

other bonds in the same debt structure. We illustrate this effect through the difference

in coupon rates between the two otherwise identical 10/m-year SBc and SBs.

Panel A (C) of Figure 5 displays differences in coupon rates between CBc and the

P ∗-year SBs over total debt face values. As anticipated, CBc has a higher coupon rate

than SBs when the total debt face value is low. This difference primarily stems from

the presence of the call risk premium and the higher default risk premium on a longer-

term bond. With lower firm leverage, the mild rollover risk implies that granting timing

flexibility cannot significantly reduce the default risk premium associated with the risk.

However, this outcome changes when the total debt face value is high. By shortening

the call protection period P ∗ to enhance timing flexibility (see Panel A of Figure 4), the

firm can effectively moderate the increase in the default risk premium by suppressing the

premium related to rollover risk. On the other hand, since P ∗ is smaller as the total debt

face value is higher, the shorter SBs magnifies the issuer’s rollover risk, thereby leading

to a surging coupon rate.28 Although Robbins and Schatzberg (1986) argue that short-

term non-callable and long-term callable bonds can act as perfect substitutes in managing

conflicts between shareholders and bondholders, our results suggest that choosing callable

bonds with short call protection might be a cost-effective solution for high-leverage firms.

Panel B (D) exhibits differences in coupon rates between the two otherwise identical

10/m-year SBc and SBs. Since the use of CBc can alleviate the risk of financial distress

and thus help control overall interest costs, it is intuitive to observe that SBc has a lower

coupon rate than SBs. By shortening the call protection length when the total debt face

value is higher, the firm can effectively moderate the increase in coupon rates not just for

CBc itself but also for the shorter-term SBc. Our findings thus suggest that providing

28Choosing a short-term bond would still help mitigate agency conflicts for high-leverage firms (Myers,
1977; Barclay et al., 2003), but the overall benefits of this choice are likely to be smaller due to the surging
interest disbursement. To balance rollover risk, the literature typically recommends either reducing
leverage (He and Xiong, 2012b; Dangl and Zechner, 2021) or lengthening stated maturities of non-callable
bonds (Childs et al., 2005).
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additional timing flexibility through the use of callable bonds also proves advantageous

in managing rollover risk and controlling interest costs for firms that rely on short-term

debt, such as financial firms (He and Xiong, 2012a; Della Seta et al., 2020) or small and

medium-sized non-financial enterprises (Cathcart et al., 2020).

5 Empirical Evidence

Our quantitative analysis yields several predictions linking the choice of call protection

length to a firm’s exposure to rollover risk. Specifically, we find that firms tend to choose

callable bonds with shorter call protection periods out of their stronger desire for precau-

tionary management of rollover risk. Since callable bonds are likely to be refinanced near

the start of predetermined call periods, the disparity between their effective and stated

maturity is more pronounced as firms choose shorter call protection periods. Moreover, we

investigate welfare implication of strategically using callable bonds by comparing interest

costs of refinancing with callable bonds to those of rolling over shorter-term non-callable

bonds. Our finding implies that using callable bonds can help control overall interest costs

on outstanding corporate bonds. In this section, we discuss evidence for these predictions.

5.1 Methodology

To relate these predictions to evidence, we pay attention to real-world corporate debt

refinancing activities. In particular, we target activities that we consider examples of

“early” debt refinancing, based on the definition by Xu (2018) as follows:

1. The issue date of a newly-issued bond should fall within a 3-month window centered

around the retirement date of a previously-issued bond.

2. The refinancing activity defined in 1) should occur at least 6 months before the

stated maturity date of the retired bond.
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In the first part of our definition, the timing of a debt refinancing activity is based on

the issue date of the newly-issued bond rather than the retirement date of the previously-

issued bond. Meanwhile, early refinancing activity defined in the second part of our

definition further implies that retired bonds should be callable or redeemable, and that

such bonds must be redeemed at least 3 months before their stated maturity dates. We

identify retired bonds by using the following four methods of redemption that affect a

bond’s outstanding amount: 1) fixed-price calls, 2) make-whole calls, 3) repurchases, and

4) tender offers. Since firms can reshuffle bond contract terms at their discretion during

debt refinancing processes, we follow Xu (2018) and treat these early refinancing activities

as the firms’ precautionary actions of debt structure management.

Our empirical analysis at the firm level proceeds as follows. We begin by defining a

binary variable D(EarlyRefinance)i,t to mark early refinancing activities in year t for

the i-th firm. If this firm issued a qualified new bond for debt refinancing in year t,

then D(EarlyRefinance)i,t equals one; otherwise, it equals zero. To examine how early

refinancing activities influence the characteristics of firms’ outstanding (callable) bonds,

we run panel regressions with the following specifications:

FirmCProtRi,t = δ0 + δ1D(EarlyRefinance)i,t + δ
′

iControlsi,t + εi,t, (19)

FirmElimRi,t = γ0 + γ1D(EarlyRefinance)i,t + γ
′

iControlsi,t + ϵi,t, (20)

FirmCouponi,t = ϕ0 + ϕ1D(EarlyRefinance)i,t + ϕ
′

iControlsi,t + ei,t. (21)

These three dependent variables that characterize the i-th firm’s outstanding bonds in year

t are defined in Equations (17), (18), and (16) in Section 3.1, respectively. FirmCProtRi,t

is the average call protection ratio, FirmElimRi,t is the average elimination ratio, and

FirmCouponi,t is the average coupon rate on outstanding corporate bonds. We provide

an illustrative example in Table A.4 of Appendix A.4 to detail how the three variables

are constructed based on bond-level variables over time. On the other hand, the col-
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umn vector Controlsi,t represents the control variables related to firm characteristics

and credit market condition, including firm size (ln(Assets)), leverage ratio (Leverage),

market-to-book ratio (M/B Ratio), tangible assets (Tangibility), earnings before interest,

taxes, depreciation, and amortization (EBITDA), cash and short-term investment (Cash),

annual equity return (Equity return), and corporate term spread (Termspread). These

definitions are also detailed in Appendix A.4. To control for time-unvarying unobservables

that might also affect a given firm’s choices of call protection length or debt refinancing

timing, we include firm fixed effects. We also include year fixed effects to control for the

interest rate and observable credit market conditions affecting the aforementioned firm’s

choices.

Using these three panel regressions, we aim to examine how rollover risk exposure

influences firms’ preference for shorter call protection periods, the divergence of effective

maturities from stated maturities, and the interest costs after the strategic use of callable

bonds. To address these targets, we run these three regressions separately for firms with

high and low rollover risk exposure. We employ three measures of rollover risk. First,

we adopt leverage ratio (Leverage) according to Childs et al. (2005) and He and Xiong

(2012b). Second, we use the level of debt in current liability (Curlia) defined as the

portion of debt in current liability (DLC in Compustat) to DLC plus long-term debt

due in more than one year (DLTT in Compustat), as in Duchin et al. (2010). Third, we

employ debt refinancing intensity (RI ) proposed by Friewald et al. (2022). We follow

their procedures by setting missing values of long-term debt due within one year (DD1

in Compustat), in years two to five (DD2, DD3, DD4, and DD5 in Compustat), and

DLTT to zero. Following their approach, we also apply two additional filters: 1) we

remove the observations whose total debt (i.e., DD1 +DLTT ) is greater than total assets,

and 2) we remove the observations whose DLTT is lower than the sum of DD2, DD3,

DD4, and DD5. To capture the high rollover-risk nature of financial firms (He and

Xiong, 2012a; Della Seta et al., 2020), we reformulate our refinancing intensity measure
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as RI = DD1/(DD1+DLTT ). Observations are classified as the high (low) rollover-risk

group in year t as their Leverage is beyond (below) the median Leverage in the same year.

Classification via Curlia or RI also proceeds in the same manner.

5.2 Results

In our first step, we examine the relationship between early refinancing activities and

leverage dynamics. We calculate average leverage ratios before, during, and after the

early refinancing year for firms conducting early refinancing activities, and then we make

pairwise comparisons to discern patterns. Moreover, we extend this analysis by juxta-

posing the results for firms that did not conduct early refinancing activities during the

same fiscal year. We report in Table 6 the leverage dynamics across three distinct phases.

Two findings are worth noting. First, early refinancing activities do not result in signif-

icant changes in leverage ratio, as it seems that firms do not considerably adjust their

leverage ratios through the channel of early refinancing.29 Second, firms conducting early

refinancing exhibit higher leverage ratios than those that do not, which reveals a strong

connection between firms with high leverage and their engagement in precautionary ac-

tions. The main driver for this connection is most likely the management of rollover risk,

especially considering the decreased stated maturity of corporate debt in the U.S. over

the past four decades (Custódio et al., 2013; Butler et al., 2022), as displayed in Figure 1.

Next, we examine how firms reshuffle call protection length for their outstanding

callable bonds through early refinancing activities. In Table 7, we present the results of

our regression analysis with FirmCProtR as the dependent variable. The key independent

variable of interest is D(EarlyRefinance). From the analysis conducted on the full

sample in column (1), we can see that the coefficient estimate for this key independent

variable is negative and statistically significant. This negative relation reveals that firms

reduce their call protection ratios by conducting early refinancing in order to enhance

29However, this observation contrasts with settings adopted by several models, such as Leland (1998),
Goldstein et al. (2001), Chen (2010), Chen et al. (2021), and Dangl and Zechner (2021).
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timing flexibility offered by callable bonds. This finding prompts the question: what is

the main driving force for this trend? The evidence presented in the following columns

confirms Prediction 2 from Section 4.2, which anticipates that firms with higher rollover

risks tend to choose callable bonds with shorter call protection periods. In columns (2)

and (3), we find that high-leverage firms significantly reduce their call protection ratios by

3.02% through early refinancing over time, compared to just a 0.95% reduction in the low-

leverage counterparts. This prediction is also confirmed by our results for firms with high

Curlia or RI shown in columns (4) and (6), respectively Although coefficient estimates

for D(EarlyRefinance) are also negative and statistically significant in columns (5) and

(7) for firms with low Curlia and RI, the coefficient values are much higher than those in

the former two columns.

We next focus on Prediction 3 from Section 4.2, investigating whether firms tend to

refinance their bonds sooner when opting for shorter call protection ratios, thus leading

to a more pronounced divergence between effective and stated maturities. We present the

results of our regression analysis with FirmElimR as the dependent variable in Table 8.

From the analysis conducted on the full sample in column (1), we observe that the coeffi-

cient estimate for D(EarlyRefinance) is positive and statistically significant; early refi-

nancing activities notably deviate effective maturities from stated maturities. If this posi-

tive coefficient estimate is juxtaposed with the negative estimate for D(EarlyRefinance)

as in column (1) of Table 7, then the lower call protection ratio indeed leads to a more

pronounced disparity between effective and stated maturity over time. Frequent debt

refinancing and the selection of shorter call protection periods are highly correlated.

Similar dynamics also appear in our analysis of sub-sample groups. First, we note

that all coefficient estimates for D(EarlyRefinance) from columns (2) to (7) of Table 8

are positive and statistically significant. The overall pronounced deviations between ef-

fective and stated maturities confirm Prediction 1 from Section 4.1, which anticipates

that firms with timing flexibility tend to refinance their callable bonds near the start
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of predetermined call periods. However, the extent of these deviations varies depending

on the chosen call protection ratios. Firms opting for smaller call protection ratios (i.e.,

firms with high Leverage, Curlia, and RI in columns (2), (4), and (6) of Table 7) tend

to conduct refinancing earlier, which notably shortens effective maturities. Therefore, we

observe greater coefficient estimates for D(EarlyRefinance) in columns (2), (4), and (6)

of Table 8 than for those in columns (3), (5), and (7). For example, in columns (4) and (5),

firms with intense refinancing needs reduce effective maturity by about 18% over time,

compared to just about a 7% reduction for firms with less frequent refinancing needs.

These results align well with Prediction 3.

Finally, we examine firms’ interest costs on their outstanding corporate bonds through

our regression analysis with FirmCoupon as the dependent variable in Table 9. Since col-

umn (1) of Table 7 exhibits a decreasing trend of the call protection ratio, we anticipate

a positive coefficient estimate for D(EarlyRefinance) in column (1) of Table 9 to reflect

increased call risk premiums on callable bonds. However, this estimate is negative but not

statistically significant. This inconsistency underscores the advantages of financial flexi-

bility provided by callable bonds in enhancing firms’ creditworthiness. While decreased

call protection ratios raise call risk premiums on callable bonds, the resulting credit en-

hancement reduces default risk premiums on both callable and non-callable bonds. That,

in turn, leads to either no significant change or even a slight reduction in the average

coupon rate. Since the credit enhancement effect is expected to be stronger for firms with

higher rollover risk, we observe a more pronounced reduction in columns (2), (4), and (6)

than for those in columns (3), (5), and (7). For example, in column (6), our regression on

the sample of firms with high RI reveals a negative and statistically significant coefficient

for D(EarlyRefinance) at the 10% level. However, in column (7), our regression on the

sample of firms with low RI does not show statistical significance for the same variable.
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6 Conclusion

Firms can make more flexible debt maturity decisions with call provisions, which allows

firms to issue long-term bonds and then conduct early redemption, effectively shortening

bonds’ terms. This paper addresses how the gap between the effective and stated ma-

turities of callable bonds reveals the importance of call protection periods, which have

become a more accurate proxy for a bond’s real lifespan. We introduce a novel theo-

retical framework to explore the choice of call protection length, focusing on early debt

refinancing.

We use a framework that emphasizes timing flexibility enabled by call periods, bound

by call protection expiration and stated maturity dates. This flexibility allows firms

to refinance callable bonds at strategic times, so they may avoid new issuances during

financial downturns and enhance their creditworthiness. While shorter call protection

periods enhance credit profiles by lowering default risk premiums, they also increase call

risk premiums. This trade-off leads us to predict that firms facing higher rollover risks,

particularly those with high leverage or frequent short-term debt, are likely to opt for

shorter call protection periods as a proactive risk management strategy.

Moreover, our framework connects debt refinancing timing to call protection length,

showing that strategic flexibility can increase overall firm value by reducing bankruptcy

costs. This increased value encourages earlier refinancing, helping firms maintain value

gains for shareholders and mitigating risk-shifting or underinvestment behaviors. Thus,

the call-to-shorten refinancing strategy pulls the effective maturity date toward the be-

ginning of the call period, establishing call protection length as a crucial indicator of a

bond’s effective maturity.

Empirical evidence supports our findings, showing a declining trend in call protection

ratios driven primarily by firms with high rollover risks that tend to refinance their callable

bonds early. We also find a stable or slightly reduced average coupon rate despite shorter

call protection ratios, underscoring the financial benefits of enhanced flexibility. Our study
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not only extends our understanding of the strategic use of callable bonds to manage

rollover risk but also suggests that further research on various facets of call provisions

could enrich our understanding of implications for the corporate bond markets.
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Figure 1: The average effective maturity (call protection length) for callable bonds

and the average stated maturities for callable and non-callable bonds. We collect

corporate bonds issued between 1950–2019 (denoted by the x-axis) from the Mergent Fixed

Income Securities Database and exclude callable bonds that are still outstanding in December

2019. The green curves in both panels indicate the average stated maturity of callable bonds.

The red and blue curves in Panel A indicate the average effective maturity and call protection

length of callable bonds, respectively. The cyan curve in Panel B represents the average stated

maturity of non-callable bonds. The stated maturity of a bond is the time span in years between

its offering and maturity dates. The effective maturity of a callable bond is the time span between

its offering and redemption effective dates. The call protection length of a callable bond is the

time span between its offering and first call dates.
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Figure 3: The choice of call protection length and expected effective maturity. The

x-axis in both panels represents the call protection length in years, which ranges from 1 to

10 years for a 10-year callable bond CBc. The y-axis in Panel A represents the total levered

firm value V L.c
0 in Equation (2) when CBc with a specific call protection length is issued and

refinanced with an otherwise identical bond repeatedly. The y-axis in Panel B represents the

time span in years for a call protection period, stated maturity, and the corresponding expected

effective maturity. The star O in both panels refers to the choice of the call protection period

that maximizes the total levered firm value. The O′ in Panel B refers to the expected effective

maturity given that the protection length is optimally chosen. All other parameter values follow

those in Table 5.
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Figure 4: Optimal call protection length and expected effective maturities over

total debt face values for two different levels of rollover frequency. In both panels, the

x-axis represents the firm’s total debt face value. The y-axis in Panels A and B represents the

optimal lengths of call protection periods P ∗ and the corresponding expected effective maturities,

respectively. The black lines refer to the scenario that the firm’s debt structure consists of a

10-year callable bond CBc and a 1-year (i.e., m = 10) non-callable bond SBc. The gray lines

indicate the scenario identical to the black lines in all other aspects except for the stated maturity

of the SBc, which equals 5 years (i.e., m = 2). The O and O′ in Panels A and B are those in

Figure 3. The N and N′ refer to the scenario in which the total debt face value is 47, and the

stated maturity of SBc is 5 years. All other parameter values follow those in Table 5.
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Figure 5: Interest costs on callable and non-callable bonds. The x and y-axes represent

the total debt face value and the coupon rate for different two-bond debt structures. The

debt structure comprises a 10/m-year non-callable bond SBc (in Panels B and D) and a 10-year

callable bond CBc with a P ∗-year call protection (in Panels A and C), as defined in Equation (2),

are denoted by black and gray colors for m = 10 and m = 2 scenarios, respectively. The optimal

protection length P ∗ is determined to maximize the initial total levered firm value given different

debt face values, as displayed in Panel A of Figure 4. The other debt structure comprises a 10/m-

year non-callable SBs (in Panels B and D) and a P ∗-year non-callable SBs (in Panels A and C),

as defined in Equation (3), are denoted by red and blue colors for m = 10 and m = 2 scenarios,

respectively. Thus, the stated maturities of non-callables in Panels B and D are (10/10=) 1-year

and (10/2=) 5-year, respectively. All other parameter values follow those in Table 5. The O′′

and O* (N′′ and N*) in Panels A and B (C and D) refer to the coupon rates of CBc and SBc

in scenario O (N) in Panel A of Figure 4.
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Table 1: Early Refinancing Activities Conducted by General Mills INC. and Barclay

Bank PLC.

This table gives two examples of early refinancing activities. Panel A exhibits six callable bonds

issued by General Mills INC. The latter four callables were issued close to the early redemption

dates of the former two previously-issued callables. Panel B exhibits five callable bonds issued

by Barclay Bank PLC. The latter two callables were issued just near the early redemption dates

of the former three previously-issued callables.

Panel A: General Mills INC.

Bond CUSIP Offering Date First Call Date Call Effective Date Maturity Date

37033LEY8 1998-02-05 2003-02-05 2003-02-05 2023-02-05

37033LFF8 1999-01-15 2003-01-22 2003-01-22 2011-01-22

37033EAX0
2003-01-31

2004-02-15 2004-02-15

2008-02-05

37033EAY8 2010-02-05

37033EAZ5
2003-02-07

2008-02-12

37033EBA9 2010-02-12

Panel B: Barclay Bank PLC.

Bond CUSIP Offering Date First Call Date Call Effective Date Maturity Date

06738JCE2

2011-02-14 2012-02-17 2012-02-17

2024-02-17

06738JC93 2026-02-17

06738JD27 2031-02-17

06738JZ23
2012-02-10 2013-02-15 2013-02-15

2017-02-15

06738KL74 2022-02-15
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Table 2: Bond characteristics summary.

This table reports summary statistics for our final bond sample. N and Stdev denote the number

of bond samples and the standard deviation, respectively. Callable bonds are those with the flag

CALLABLE = Y in Mergent FISD, and non-callable bonds are those with the flag CALLABLE

= N. BondStaM (BondCProt) denotes the length of the stated bond maturity (call protection).

BondEffM denotes the length of effective bond maturity. BondElim denotes the length of the

time eliminated from the original bond’s life due to early redemption. BondCProtR and Bon-

dElimR are two relative measures defined as BondCProt/BondStaM and BondElim/BondStaM,

respectively. BondCoupon is the coupon rate for each bond. Bond rating is the score of the

bond rating on the bond issue date. We follow the scores assigned in Mergent FISD (e.g, S&P’s

bond rating AAA = 1, and AA+ = 2). Covenant count is the number of restrictive covenants

present in one bond. More details on variable definitions are shown in Appendix A.4.

Variable N Mean Median Stdev

Panel A: Callable bonds
BondStaM (yrs) 41,670 12.29 10.01 8.98
BondEffM (yrs) 33,537 4.55 4.15 3.40
BondCProt(yrs) 41,646 3.77 2.98 5.34
BondCProtR 41,646 0.32 0.25 0.29
BondElim (yrs) 33,537 6.45 4.70 7.07
BondElimR 33,537 0.50 0.57 0.35
BondCoupon (%) 40,485 6.17 6.00 2.84
Offering amount($millions) 41,670 332.63 175.00 2,052.70
Bond rating 17,529 8.39 8.00 4.07
Covenant count 41,670 2.60 0.00 3.35

Panel B: Non-callable bonds
BondStaM (yrs) 80,308 4.58 3.01 5.41
BondCoupon (%) 76,949 4.80 4.52 4.89
Offering amount($millions) 80,308 164.54 8.26 1,978.93
Bond rating 28,446 5.44 5.00 2.34
Covenant count 80,308 0.39 0.00 1.28
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Table 3: Firm characteristics summary.

This table reports summary statistics for our firm-level data during the period 1990–2018. Lever-

age refers to the ratio of total assets to total stockholders’ equity. Curlia denotes the ratio of

debt in current liability to the sum of debt in current liability and debt due in more than one

year. M/B ratio refers to market-to-book ratio. Tangibility refers to the ratio of tangible assets

to total assets. EBITDA represents the ratio of earnings before interest, tax, depreciation, and

amortization to total assets. Cash represents the ratio of cash and short-term investment to

total assets. Firm rating refers to the ordinal score of S&P long-term firm credit rating. The

rating score of a given year is computed using a conversion process in which AAA-rated firms

are assigned a value of 1, and D-rated firms are assigned a value of 22. The definition of all

variables on firm fundamentals are detailed in Table A.3 in Appendix A.4.

Variable Firm-year Obs Mean Median Stdev

Firm-level bond data
FirmStaM (yrs) 46,812 11.81 10.00 6.80
FirmCProtR 26,560 0.51 0.49 0.23
FirmElimR 15,732 0.26 0.13 0.29
FirmCoupon (%) 48,082 7.11 7.04 2.64

Other firm fundamentals
Total assets ($millions) 78,034 14,473.95 1,711.02 48,047.42
Leverage 78,015 3.91 2.61 6.99
Curlia 73,986 0.20 0.08 0.26
M/B ratio 65,491 1.75 1.34 1.21
Tangibility 75,090 0.33 0.26 0.28
EBITDA 75,050 0.10 0.11 0.13
Cash 77,945 0.12 0.05 0.16
Equity return 63,536 0.15 0.06 0.62
Firm rating 38,401 10.05 10.00 3.90
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Table 4: Comparisons of bond characteristics between low-leverage and high-

leverage (curlia) firms.

The comparison is performed via BondStaM, BondEffM, BondCProt, BondCProtR, BondElim,

and BondElimR. The values represent the subsample averages of bond issuers in the first row

of each panel. In particular, firms are classified as low-leverage (low-curlia) or high-leverage

(high-curlia) in one year according to the median Leverage (Curlia) of the sample firms in that

year in the sample period 1990–2018. The corresponding subsample represents the outstanding

bonds issued by firms when they are classified as either low-leverage (low-curlia) or high-leverage

(high-curlia) in that year. *, **, and *** denote that the difference in bond characteristics is

statistically significantly at the 10%, 5% and 1% level, respectively.

Panel A: Low-leverage vs. high-leverage firms

Low-leverage High-leverage Difference t-value

BondStaM (yrs) 11.58 12.09 -0.51 *** -3.16

BondEffM (yrs) 6.46 4.54 1.92 *** 9.92

BondCProt(yrs) 4.03 2.97 1.06 *** 22.77

BondCProtR 0.41 0.28 0.13 *** 34.41

BondElim(yrs) 6.46 7.55 -1.09 *** -7.6

BondElimR 0.46 0.57 -0.11 *** -14.09

Panel B: Low-curlia vs. high-curlia firms

Low-curlia High-curlia Difference t-value

BondStaM (yrs) 11.93 12.07 -0.14 -1.1

BondEffM (yrs) 5.2 4.35 0.85 *** 18.56

BondCProt(yrs) 4.02 2.7 1.32 *** 36.45

BondCProtR 0.39 0.26 0.13 *** 47.5

BondElim(yrs) 6.73 7.72 -0.99 *** -8.69

BondElimR 0.47 0.55 -0.08 *** -17.41

62



Table 5: Baseline parameters.

Market Condition
Interest rate r 4.61%
Corporate tax rate τ 30.6%
Debt flotation cost γ 0.5%

Firm Characteristics
Payout rate: q 2%
Firm value volatility σ 21%
Bankruptcy cost ω 37%

Debt Structure
Stated maturity of the callable bond T 10
Stated maturity of the non-callable bond T/m 1
Rollover frequency m 10
Current fundamental V0 100
Total debt face value FS + FL 61.68
Proportion of the non-callable bond’s face value FS/(FS + FL) 8%
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Table 6: Early refinancing activities and changes in firm leverage.

In this table, we present a comparative analysis of leverage dynamics across three distinct phases

for firms conducting early refinancing activities. In the columns with D(EarlyRefinance) = 1,

we list the average leverage ratios before, during, and after the early refinancing year. In the

columns with D(EarlyRefinance) = 0, we list the average leverage ratios during the same fiscal

year for firms that did not conduct early refinancing activities. Difference represents the leverage

ratio in the latter year minus that in the former year. We report the corresponding values of

t-statistics and p-statistics adjusted for clustering at the firm level in the last two rows. *, **,

and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Leverage

D(EarlyRefinance) = 1 D(EarlyRefinance) = 0

Before early refinance year 5.83 5.79 3.82 3.84

Early refinancing year 5.83 5.82 3.84 3.81

After early refinance year 5.71 5.72 3.80 3.81

Difference -0.11 -0.11 0.03 -0.02 -0.03 -0.03

t-value -0.51 -0.50 0.14 -0.55 -0.73 -0.91

p-value 0.61 0.62 0.89 0.58 0.47 0.36
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Table 7: Regressions of FirmCProtR.

This table reports regression results for the call protection length in different sub-samples. The

dependent variable is FirmCProtR, which indicates the average proportion of call protection

length to entire stated bond maturity; its definition is expressed in Equation (17). The inde-

pendent variable D(EarlyRefinance) is a dummy variable which equals 1 when firms conduct an

early refinancing activity. Other controls include Termspread, ln(Assets), Leverage, M/B Ratio,

Tangibility, EBITDA, Cash, and Equity return; their definitions are detailed in Appendix A.4.

Three different sub-sample groups are considered based on three measures of rollover risk: lever-

age ratio (Leverage), level of debt in current liability (Curlia), and rollover intensity (RI ) defined

in Section 5.1. The observations at the firm-year level are classified as the high (low) rollover

risk group in year t as either of their Leverage, CurLia, or RI is beyond (below) their medians

in the same year. Firm fixed effects and year fixed effects are included. We report the value of

t-statistics adjusted for clustering at the firm level in parentheses. *,**, and *** denote statis-

tical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable = FirmCProtR

(1) (2) (3) (4) (5) (6) (7)

Full Sample High Leverage Low Leverage High Curlia Low Curlia High RI Low RI

D(EarlyRefinance) -0.0275*** -0.0302*** -0.0095 -0.0381*** -0.0139*** -0.0374*** -0.0189***

(-5.47) (-4.97) (-1.23) (-4.17) (-2.64) (-4.34) (-3.19)

Termspread 9.6064*** 10.4401*** 8.3523*** 9.9880*** 8.5311*** 11.0100*** 8.4814***

(12.90) (10.82) (6.79) (10.74) (8.54) (10.48) (8.68)

ln(Asset) 0.0082 -0.0089 0.0196** 0.0059 0.0021 -0.0043 0.0067

(1.36) (-1.14) (2.09) (0.68) (0.30) (-0.45) (0.92)

Leverage 0.0002 -0.0003 0.0001 0.0006 0.0002 0.0002 0.0001

(1.24) (-0.84) (0.11) (1.63) (0.92) (0.53) (0.54)

M/B Ratio 0.0029 0.0075 0.0033 -0.0039 0.0052 -0.0089 0.0076*

(0.74) (1.48) (0.59) (-0.56) (1.21) (-1.18) (1.67)

Tangibility 0.0435 0.0459 0.0524 -0.0975* 0.0985** 0.0012 0.0726*

(1.14) (0.80) (1.01) (-1.81) (2.42) (0.02) (1.71)

EBITDA -0.0018 0.0075 -0.0165 0.0633* -0.0271 0.0372 -0.0339

(-0.07) (0.20) (-0.47) (1.65) (-0.99) (0.85) (-1.06)

Cash 0.0033 -0.0131 0.0263 0.0011 -0.0112 -0.0025 -0.0082

(0.10) (-0.29) (0.57) (0.02) (-0.32) (-0.04) (-0.22)

Equity Return 0.0060*** 0.0068*** 0.0015 0.0073** 0.0050** 0.0078** 0.0059**

(3.29) (2.78) (0.48) (2.25) (2.28) (2.35) (2.44)

Constant -9.1299*** -9.8256*** -7.9607*** -9.4048*** -8.0683*** -10.3856*** -8.0138***

(-12.56) (-10.41) (-6.66) (-10.44) (-8.19) (-10.25) (-8.38)

Firm FEs Y Y Y Y Y Y Y

Year FEs Y Y Y Y Y Y Y

Adj. R-squared 0.6700 0.6739 0.7346 0.7285 0.6597 0.7232 0.6710

Observations 18967 11064 7291 7644 10446 6905 10774
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Table 8: Regressions of FirmElimR.

This table reports regression results for the time span eliminated from the original bond’s life

due to early redemption in different sub-samples. The dependent variable is FirmElimR, which

indicates the average proportion of the time span eliminated from the original bond’s life due

to bond redemption to entire stated bond maturity; its definition is expressed in Equation (18).

Other controls include Termspread, ln(Assets), Leverage, M/B Ratio, Tangibility, EBITDA,

Cash, and Equity return; their definitions are detailed in Appendix A.4. Three different sub-

sample groups are considered based on three measures of rollover risk: leverage ratio (Leverage),

level of debt in current liability (Curlia), and rollover intensity (RI ) defined in Section 5.1. The

observations at the firm-year level are classified as the high (low) rollover risk group in year t as

either of their Leverage, CurLia, or RI is beyond (below) their medians in the same year. Firm

fixed effects and year fixed effects are included. We report the value of t-statistics adjusted for

clustering at the firm level in parentheses. *,**, and *** denote statistical significance at the

10%, 5%, and 1% level, respectively.

Dependent variable = FirmElimR

(1) (2) (3) (4) (5) (6) (7)

Full Sample High Leverage Low Leverage High Curlia Low Curlia High RI Low RI

D(EarlyRefinance) 0.1227*** 0.1299*** 0.1129*** 0.1759*** 0.0731*** 0.1754*** 0.0869***

(15.16) (12.76) (8.14) (14.55) (6.46) (14.14) (8.23)

Termspread -6.4206*** -5.1390*** -8.7273*** -5.1260*** -9.4587*** -5.7323*** -7.0134***

(-5.24) (-3.36) (-3.83) (-3.20) (-4.39) (-2.95) (-4.33)

ln(Asset) -0.0243*** -0.0237** -0.0124 -0.0250** -0.0220* -0.0363*** -0.0319**

(-2.96) (-2.15) (-0.86) (-2.13) (-1.82) (-3.03) (-2.52)

Leverage -0.0010** -0.0012 0.0002 -0.0011 -0.0011* -0.0015* -0.0008

(-2.06) (-1.55) (0.13) (-1.53) (-1.78) (-1.91) (-1.26)

M/B Ratio -0.0163** -0.0119 -0.0155* -0.0141 -0.0132 -0.0332*** -0.0066

(-2.41) (-1.13) (-1.68) (-1.42) (-1.16) (-3.04) (-0.63)

Tangibility -0.0438 -0.0321 -0.0816 0.0063 -0.1187* -0.0503 -0.0926

(-0.93) (-0.57) (-1.00) (0.10) (-1.78) (-0.71) (-1.26)

EBITDA 0.0663 0.0615 0.0329 0.1268 0.0348 0.1468 0.1270

(1.28) (0.82) (0.39) (1.40) (0.49) (1.59) (1.63)

Cash 0.1735*** 0.1567** 0.0896 0.1859** 0.1671* 0.2053*** 0.1782**

(3.32) (2.25) (1.11) (2.43) (1.87) (2.68) (2.10)

Equity Return 0.0085 0.0079 0.0046 0.0157 0.0003 0.0202** 0.0031

(1.41) (1.05) (0.42) (1.60) (0.04) (2.07) (0.33)

Constant 6.9405*** 5.6344*** 9.1959*** 5.5579*** 10.0758*** 6.3549*** 7.6125***

(5.67) (3.69) (4.05) (3.49) (4.66) (3.25) (4.75)

Firm FEs Y Y Y Y Y Y Y

Year FEs Y Y Y Y Y Y Y

Adj. R-squared 0.4347 0.4679 0.4267 0.4272 0.3926 0.4285 0.4349

Observations 10628 6339 3714 5737 4131 4995 4690
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Table 9: Regressions of FirmCoupon.

This table reports regression results for the interest disbursement on firms’ outstanding bonds

in different sub-samples. The dependent variable is FirmCoupon, which indicates the aver-

age interest disbursement on firms’ outstanding corporate bonds; its definition is expressed in

Equation (16). Other controls include Termspread, ln(Assets), Leverage, M/B Ratio, Tangibil-

ity, EBITDA, Cash, and Equity return; their definitions are detailed in Appendix A.4. Three

different sub-sample groups are considered based on three measures of rollover risk: leverage

ratio (Leverage), level of debt in current liability (Curlia), and rollover intensity (RI ) defined in

Section 5.1. The observations at the firm-year level are classified as the high (low) rollover risk

group in the year t as either of their Leverage, CurLia, or RI is beyond (below) their medians

in the same year. Firm fixed effects and year fixed effects are included. We report the value of

t-statistics adjusted for clustering at the firm level in parentheses. *,**, and *** denote statis-

tical significance at the 10%, 5%, and 1% level, respectively.

Dependent variable = FirmCoupon

(1) (2) (3) (4) (5) (6) (7)

Full Sample High Leverage Low Leverage High Curlia Low Curlia High RI Low RI

D(EarlyRefinance) -0.0240 -0.0482 0.0251 -0.0755 -0.0147 -0.1108* 0.0232

(-0.59) (-0.86) (0.52) (-0.96) (-0.40) (-1.75) (0.47)

Termspread -97.2879*** -108.2460*** -77.1650*** -110.3911*** -85.5454*** -96.3923*** -95.8045***

(-21.89) (-18.70) (-10.49) (-18.75) (-13.64) (-14.63) (-17.12)

ln(Asset) -0.4421*** -0.4256*** -0.4681*** -0.4180*** -0.4571*** -0.4338*** -0.4293***

(-9.95) (-7.51) (-7.82) (-7.33) (-7.91) (-6.85) (-7.84)

Leverage 0.0036** 0.0103*** -0.0041 0.0043* 0.0031* 0.0041* 0.0048**

(2.41) (3.60) (-0.69) (1.92) (1.67) (1.66) (2.53)

M/B Ratio -0.1608*** -0.1726*** -0.1361*** -0.1598*** -0.1723*** -0.1600*** -0.1973***

(-6.34) (-4.44) (-4.27) (-3.99) (-5.54) (-3.62) (-6.33)

Tangibility -0.3967* -0.5887* 0.0764 -0.5979* -0.1856 -0.3857 -0.1556

(-1.73) (-1.67) (0.23) (-1.78) (-0.62) (-1.11) (-0.51)

EBITDA -0.1154 -0.0161 0.0473 0.0700 -0.2364 0.3426 -0.3592

(-0.67) (-0.07) (0.19) (0.27) (-1.00) (1.13) (-1.42)

Cash -0.7402*** -0.5833** -0.6494** -0.1767 -0.9319*** -0.5381* -0.8231***

(-3.77) (-1.96) (-2.51) (-0.61) (-3.51) (-1.77) (-3.32)

Equity Return 0.1281*** 0.1324*** 0.1253*** 0.1235*** 0.1274*** 0.1019*** 0.1704***

(8.89) (6.58) (4.79) (4.87) (6.45) (4.44) (7.79)

Constant 108.8851*** 120.0057*** 88.1917*** 121.9777*** 97.0241*** 107.8474*** 107.2447***

(25.03) (21.38) (12.08) (21.27) (15.64) (16.57) (19.48)

Firm FEs Y Y Y Y Y Y Y

Year FEs Y Y Y Y Y Y Y

Adj. R-squared 0.7967 0.8032 0.8168 0.7894 0.8104 0.7995 0.8012

Observations 35805 20047 15026 17118 17440 14733 19215
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Appendix A

A.1 Backward-Recursive Pricing Algorithm Using a Forest

A.1.1 Backward Induction Using the Forest in Panel C of Figure 2: A Step-

by-Step Guide

In this paper, we employ a forest to evaluate equity and debt when calls for early debt

refinancing are limited to specified call dates. The forest is composed of M layers of CRR

binomial trees with n equal-length time steps ∆t, ∆t = T/n, and the parameters:

u = eσ
√
∆t, d = e−σ

√
∆t,

Pu = e(r−q)∆t−d
u−d

, Pd = 1− Pu,

to discretely simulate the firm value process of Equation (1) over different statuses of debt

structure. The variables u and d parameterize the state of the firm value, from the initial

value V either up to V u or down to V d at the next time step; Pu and Pd parameterize the

probability of up and down movement of the firm value for each time step. To evaluate

the T/2-year SBc
T/2 and the T -year CBc

T/2,T with a single call date at t = T/2 using a

2T -year time span, we apply backward induction in the forest with M = 4 and n = 6 in

Panel C of Figure 2 to capture all possible changes in debt structure due to debt (early)

refinancing. We detail here this backward induction procedure step-by-step as follows.

To assess the gains and losses from activities of debt refinancing, the values of other

later-issued bonds should be computed. We note that the previously-issued and later-

issued bonds are identical in all other aspects except for their issue dates. As illustrated

in Figure A.1, the first two later-issued bonds are T/2-year SBc
T and T -year CBc

T, 3T/2

(i.e., the bonds in the dark red piece of the second layer); they are issued at t = T/2 to

repay the maturing SBc
T/2 and early redeem CBc

T/2, T (i.e., the bonds in the black piece

of the first layer), respectively. The second two bonds are T/2-year SBc
3T/2 and T -year
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CBc
3T/2, 2T (i.e., the bonds in the dark green piece of the third layer); they are issued at

t = T to repay the maturing SBc
T and CBc

T/2, T (i.e., the bonds in the gray piece of the

first layer), or to repay the maturing SBc
T and early redeem CBc

T, 3T/2, respectively. The

third two bonds are the two T/2-year SBs
2T ; CS and CL (FS and FL) are their coupon

rates (face values) of the two bonds. They are issued at t = 3T/2 to repay the maturing

SBc
3T/2 and CBc

T, 3T/2 (i.e., the bonds in the light red piece of the second layer), or to

repay the maturing SBc
3T/2 and early redeem CBc

3T/2, 2T .

The backward induction procedure in the forest starts from t = 2T and are separated

into nine stages. In each stage, we work backward in the tree from the lowest layer to the

highest one as follows.

Stage 1: t = 2T

As illustrated in Figure A.1, there are two statues of debt structure. The 4th Layer refers

to the first one comprised of two T/2-year SBs
2T . The 3

rd Layer refers to the second one

comprised of a T/2-year SBc
2T and a T -year CBc

3T/2, 2T . We then employ two CRR trees;

each simulates the firm value evolution over one state of debt structure.

Stage 1 – 4th Layer:

If the firm chooses to early redeem the CBc
3T/2, 2T and simultaneously repay the maturing

SBc
3T/2 at t = 3T/2, the two SBs

2T will be issued. Thus at t = 2T , the capital structure

components are the two SBs
2T and the equity Es

2T, 2T . The equity values for the terminal

nodes of the fourth layer orange tree in Panel C are:

Es
aT,bT (Vt, t) = max (Vt + δt − (1− τ)(CSFS + CLFL)∆t− (FS + FL) , 0) , (22)

in which a = b = 2. The δt is set to Vte
q∆t − Vt and will converge to qVtdt if ∆t is small
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enough. The values of the corresponding non-callable bond is:

SBs
aT (Vt, t |T/2) =


FM + CMFM∆t if Es

aT,bT (Vt, t) > 0,

(1− ω)(Vt + δt)× αM otherwise,

(23)

in which M can be S or L; the αM equals FM/(FS +FL) since the two non-callable bonds

are equally senior during the liquidation process.

Stage 1 – 3rd Layer:

If the firm repays the maturing SBc
3T/2 alone through the proceeds from raising SBc

2T at

t = 3T/2, then the three capital structure components at t = 2T are SBc
2T , CBc

3T/2, 2T ,

and Ec
2T, 2T . The equity values for the terminal nodes of the third layer green tree are:

Ec
aT,bT (Vt, t) = max (Vt + δt − (1− τ)(CSFS + CLFL)∆t− (FS + FL) , 0) , (24)

The values of the corresponding SBc
2T and CBc

3T/2, 2T are:

SBc
aT (Vt, t |T/2) =


FS + CSFS∆t if Ec

aT,bT (Vt, t) > 0,

(1− ω)(Vt + δt)× αS
otherwise,

(25)

CBc
pT,bT (Vt, t |T/2, T ) =


FL + CLFL∆t if Ec

aT,bT (Vt, t) > 0,

(1− ω)(Vt + δt)× αL
otherwise,

(26)

in which a = b = 2 and p = 3/2; αS and αL are equal to FS/(FS +FL) and FL/(FS +FL),

respectively.

Stage 2: 3T/2 < t < 2T

As illustrated in Figure A.1, the statues of debt structure are identical to those in Stage 1.
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Stage 2 – 4th Layer:

When the debt structure components are two SBs
2T , the equity value is expressed as:

Es
aT,bT (Vt, t) = max

δt − (1− τ)(CSFS + CLFL)∆t+ Es
aT,bT (Vt+ , t

+)︸ ︷︷ ︸
A1

, 0

 , (27)

in which a = b = 2. The term A1 is the expected present equity value right after time t,

and its value can be calculated using backward induction in the fourth layer orange CRR

tree as follows:

e−r∆t

(
Pu × Es

aT,bT (Vtu, t+∆t) + Pd × Es
aT,bT (Vtd, t+∆t)

)
. (28)

The value of SBs
2T is:

SBs
aT (Vt, t |T/2) =


CMFM∆t+ SBs

aT (Vt+ , t
+ |T/2)︸ ︷︷ ︸

A2

if Es
aT,bT (Vt, t) > 0,

(1− ω)(Vt + δt)× αM otherwise,

(29)

in which the term A2 refers to the expected present bond value when the coupon payment

occurred at time t is not yet considered; its value can also be calculated using backward

induction in the same tree as follows:

e−r∆t

(
Pu × SBs

aT (Vtu, t+∆t |T/2) + Pd × SBs
aT (Vtd, t+∆t |T/2)

)
. (30)

Stage 2 – 3rd Layer:

When the debt structure components are SBc
2T and CBc

3T/2, 2T , the equity value is in turn

71



expressed as:

Ec
aT,bT (Vt, t) = max

δt − (1− τ)(CSFS + CLFL)∆t+ Ec
aT,bT (Vt+ , t

+)︸ ︷︷ ︸
A3

, 0

 , (31)

in which a = b = 2. The term A3 is the expected present equity value right after time t,

and its value can be calculated using backward induction in the third layer green CRR

tree as follows:

e−r∆t

(
Pu × Ec

aT,bT (Vtu, t+∆t) + Pd × Ec
aT,bT (Vtd, t+∆t)

)
. (32)

The value of SBc
2T is:

SBc
aT (Vt, t |T/2) =


CSFS∆t+

A4︷ ︸︸ ︷
SBc

aT (Vt+ , t
+ |T/2) if Ec

aT,bT (Vt, t) > 0,

(1− ω)(Vt + δt)× αS otherwise,

(33)

in which the term A4 can be evaluated using backward induction in the same tree as

follows:

e−r∆t

(
Pu × SBc

aT (Vtu, t+∆t |T/2) + Pd × SBc
aT (Vtd, t+∆t |T/2)

)
. (34)

The value of CBc
3T/2,2T is:

CBc
pT,bT (Vt, t |T/2, T ) =


CLFL∆t+

A5︷ ︸︸ ︷
CBc

pT,bT (Vt+ , t
+ |T/2, T ) if Ec

aT,bT (Vt, t) > 0,

(1− ω)(Vt + δt)× αL
otherwise,

(35)

in which p = 3/2. The term A5 can also be evaluated using backward induction in the

same tree as follows:

e−r∆t

(
Pu × CBc

pT,bT (Vtu, t+∆t |T/2, T ) + Pd × CBc
pT,bT (Vtd, t+∆t |T/2, T )

)
. (36)
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Stage 3: t = 3T/2

As illustrated in Figure A.1, there are three possible scenarios. The 4th Layer denotes

the scenario in which the firm issues the two SBs
2T to repay the maturing SBc

3T/2 and

early redeem CBc
3T/2, 2T (i.e., bonds in the third layer), or to repay the maturing SBc

3T/2

and CBc
T, 3T/2 (i.e., bonds in the second layer). The 3rd Layer refers to the scenario in

which the firm will either choose to refinance CBc
3T/2, 2T early and simultaneously roll over

SBc
3T/2 through the proceeds from raising the two SBs

2T (i.e., transfer from the third layer

to the fourth), roll over SBc
3T/2 alone through the proceeds from raising SBc

2T (i.e., stay

in the third layer), or declare default. Finally, the 2nd Layer represents the scenario in

which the firm will either repay the maturing SBc
3T/2 and CBc

T, 3T/2 through the proceeds

from raising SBs
2T (i.e., transfer from the second layer to the fourth) or declare default.

Stage 3 – 4th Layer:

When the firm issues the two SBs
2T at t = 3T/2, the equity value on the issue date can

be determined using backward induction in the fourth layer orange CRR tree as the ex-

pression in Equation (28). The value of SBs
2T can also be computed using the expression

in Equation (30).

Stage 3 – 3rd Layer:

The firm will either choose to refinance CBc
3T/2, 2T early and simultaneously roll over the

SBc
3T/2 through the proceeds from raising the two SBs

2T , roll over SB
c
3T/2 alone through

the proceeds from raising the SBc
2T , or declare default. Since the firm will make its de-

fault and early refinancing decision to serve shareholders’ best interests, the equity value

is expressed in three pieces as follows:
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Ec
aT,bT (Vt, t)

= max

(
Es

(a+ 1
2
)T,bT

(Vt, t)︸ ︷︷ ︸
levered equity value
when two SBs

2T
are outstanding

+ δt − (1− τ)(CSFS + CLFL)∆t

gain or loss from rollover and early refinancing︷ ︸︸ ︷
−(FS +Kt)︸ ︷︷ ︸
repayment of

SBc
3T/2

and CBc
3T/2,2T

+(1− γ)
(
SBs

bT (Vt, t |T/2) + SBs
bT (Vt, t |T/2)

)
︸ ︷︷ ︸

proceeds from raising
the two new SBs

2T

,

Ec
(a+ 1

2
)T,bT

(Vt, t)︸ ︷︷ ︸
levered equity value when
SBc

2T and CBc
3T/2, 2T

are outstanding

+ δt − (1− τ)(CSFS + CLFL)∆t

rollover gain or loss︷ ︸︸ ︷
−FS︸︷︷︸

repayment of
the maturing

SBc
3T/2

+(1− γ)SBc
(a+ 1

2
)T
(Vt, t |T/2)︸ ︷︷ ︸

proceeds from raising
the new SBc

2T

, 0︸︷︷︸
default

)
.

(37)

in which a = 3/2 and b = 2. We note that the Kt in the first piece of above equity value

is the scheduled call price, and the values of the two orange terms are the final evaluation

results in Stage 3 – 4th Layer. In addition, based on the final evaluation results in Stage

2 – 3rd Layer, the values of the light green terms in the second piece of the equity value are

calculated using the expressions in Equations (32) and (34), which denote the backward

induction in the third layer light green tree. On the other hand, the value of the maturing

SBc
3T/2 is expressed by Equation (25), and the CBc

3T/2,2T value is:

CBc
pT,bT (Vt, t |T/2, T ) =



CLFL∆t+Kt if Ec
aT,bT (Vt, t) > 0

and call is announced

CLFL∆t+ CBc
pT,bT (Vt+ , t

+ |T/2, T )︸ ︷︷ ︸
A6

if Ec
aT,bT (Vt, t) > 0

and call is not announced

(1− ω)(Vt + δt)× αL otherwise,

(38)
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in which p is 3/2 and αL equals FL/(FS + FL). The term A6 can be evaluated using

the expression in Equation (36), which denotes the backward induction in the same light

green tree.

Stage 3 – 2nd Layer:

The firm will either roll over the maturing SBc
3T/2 and CBc

T,3T/2 by issuing the two SBs
2T ,

or announce default. Since the firm will make its default decision to serve shareholders’

best interests, the equity value is expressed as:

Ec
aT,bT (Vt, t)

= max

(
Es

(a+ 1
2
)T,(b+ 1

2
)T
(Vt, t)︸ ︷︷ ︸

levered equity value when
the two SBs

2T are outstanding

+δt − (1− τ)(CSFS + CLFL)∆t

rollover gain and loss︷ ︸︸ ︷
−(FS + FL)︸ ︷︷ ︸
repayment of
the maturing

SBc
3T/2

and CBc
T, 3T/2

+(1− γ)
(
SBs

(a+ 1
2
)T
(Vt, t |T/2) + SBs

(a+ 1
2
)T
(Vt, t |T/2)

)
︸ ︷︷ ︸

proceeds from raising two new SBs
2T

, 0︸︷︷︸
default

)
.

(39)

in which a = b = 3/2. The values of the two orange terms in this equation are the final

evaluation results in Stage 3 – 4th Layer. The corresponding values of the SBc
3T/2 and

CBc
T, 3T/2 can be expressed by Equations (25) and (26), for which p = 1.

Stage 4: T < t < 3T/2

Like Stage 2, there are also two statues of debt structure, as illustrated in Figure A.1. The

3rd Layer refers to the one comprised of a T/2-year SBc
3T/2 and a T -year CBc

3T/2, 2T . In

this scenario, the values of the equity and the two bonds are expressed as Equations (31),

(33), and (35), in which a = 3/2, b = 2, and p = 3/2. The 2nd Layer refers to the one

comprised of a T/2-year SBc
3T/2 and a T -year CBc

T, 3T/2. The values of the equity and the

two bonds are also expressed by the same three equations; however, a = b = 3/2, and
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p = 1.

Stage 5: t = T

Like Stage 3, there are also three possible scenarios, as illustrated in Figure A.1. The

3rd Layer denotes the scenario in which the firm issues SBc
3T/2 and CBc

3T/2, 2T to repay

the maturing SBc
T and early redeem CBc

T, 3T/2 (i.e., bonds in the second layer), or to

repay the maturing SBc
T and CBc

T/2, T (i.e., bonds in the first layer). On the other hand,

the 2nd Layer refers to the scenario in which the firm will either choose to refinance

CBc
T, 3T/2 early and simultaneously roll over the SBc

T through the proceeds from raising

CBc
3T/2, 2T and SBc

3T/2 (i.e., transfer from the second layer to the third), roll over SBc
T

alone through the proceeds from raising SBc
3T/2 (i.e., stay in the second layer), or declare

default. Finally, the 1st Layer represents the scenario in which the firm will either repay

the maturing SBc
T and CBc

T/2, T through the proceeds from raising SBc
3T/2 and CBc

3T/2, 2T

(i.e., transfer from the first layer to the third) or declare default.

Stage 5 – 3rd Layer:

When the firm issues SBc
3T/2 and CBc

3T/2,2T at t = T , the equity value on the issue date

can be determined using backward induction in the third layer green CRR tree, as de-

scribed in Equation (32), in which a = 3/2 and b = 2. The values of SBc
3T/2 and CBc

3T/2, 2T

can also be computed using the expressions of Equations (34) and (36), for which p = 3/2.

Stage 5 – 2nd Layer:

The firm will either choose to refinance CBc
T, 3T/2 early and simultaneously roll over the

SBc
T through the proceeds from raising SBc

3T/2 and CBc
3T/2, 2T , roll over SB

c
T alone through

the proceeds from raising SBc
3T/2, or declare default. Again, since the firm will make its

default and early refinancing decision to serve shareholders’ best interests, the equity
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value is expressed in three pieces as follows:

Ec
aT,bT (Vt, t)

= max

(
Ec

(a+ 1
2
)T,(b+ 1

2
)T
(Vt, t)︸ ︷︷ ︸

levered equity value when
SBc

3T/2
and CBc

3T/2,2T

are outstanding

+ δt − (1− τ)(CSFS + CLFL)∆t

gain or loss from rollover and early refinancing︷ ︸︸ ︷
−(FS +Kt)︸ ︷︷ ︸
repayment of

SBc
T and CBc

T,3T/2

+(1− γ)
(
SBc

(a+ 1
2
)T
(Vt, t |T/2) + CBc

(p+ 1
2
)T,(b+ 1

2
)T
(Vt, t |T/2, T )

)
︸ ︷︷ ︸

proceeds from raising the new
SBc

3T/2
and CBc

3T/2,2T

,

Ec
(a+ 1

2
)T,bT

(Vt, t)︸ ︷︷ ︸
levered equity value when
SBc

3T/2
and CBc

T,3T/2

are outstanding

+ δt − (1− τ)(CSFS + CLFL)∆t)

rollover gain or loss︷ ︸︸ ︷
−FS︸︷︷︸

repayment of
the maturing

SBc
T

+(1− γ)SBc
(a+ 1

2
)T
(Vt, t |T/2)︸ ︷︷ ︸

proceeds from raising
the new SBc

3T/2

, 0︸︷︷︸
default

)
.

(40)

in which a = 1, b = 3/2, and p = 1. The values of the green terms in the first piece of the

equity value are the final evaluation results in Stage 5 – 3rd Layer. In addition, based on

the final evaluation results in Stage 4 – 2nd Layer, the values of the light red terms in the

second piece of the equity value are calculated using the expressions in Equations (32)

and (34), which denote the backward induction in the second layer red tree. On the other

hand, the corresponding value of the maturing SBc
T is expressed by Equation (25), and

the value of the CBc
T, 3T/2 value is expressed by Equation (38).

Stage 5 – 1st Layer:

The firm will roll over the maturing SBc
T and CBc

T/2, T by issuing SBc
3T/2 and CBc

3T/2, 2T ,

or announce default. Since the firm will make its default decision to serve shareholders’
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best interests, the equity value is expressed as:

Ec
aT,bT (Vt, t)

= max

(
Ec

(a+ 1
2
)T,(b+1)T

(Vt, t)︸ ︷︷ ︸
levered equity value when
SBc

3T/2
and CBc

3T/2,2T

are outstanding

+δt − (1− τ)(CSFS + CLFL)∆t

rollover gain and loss︷ ︸︸ ︷
−(FS + FL)︸ ︷︷ ︸
repayment of
the maturing

SBc
T and CBc

T/2,T

+(1− γ)
(
SBc

(a+ 1
2
)T
(Vt, t |T/2) + CBc

(p+1)T,(b+1)T (Vt, t |T/2, T )
)

︸ ︷︷ ︸
proceeds from raising the new

SBc
3T/2

and CBc
3T/2,2T

, 0︸︷︷︸
default

)
,

(41)

in which a = b = 1 and p = 1/2. The values of the green terms are the final evalua-

tion results in Stage 5 – 3rd Layer. The corresponding values of the maturing SBc
T and

CBc
T/2, T can be expressed by Equations (25) and (26).

Stage 6: T/2 < t < T

Like Stages 2 and 4, there are two statues of debt structure, as illustrated in Figure A.1.

The 2nd Layer refers to the one comprised of a T/2-year SBc
T and a T -year CBc

T, 3T/2.

The values of the equity and the two bonds are expressed by Equations (31), (33), and

(35), in which a = 1, b = 3/2, and p = 1. On the other hand, the 1st Layer refers to the

one comprised of a T/2-year SBc
T and a T -year CBc

T/2, T . The values of the equity and

the two bonds are also expressed by the same three equations; however, a = b = 1, and

p = 1/2.

Stage 7: t = T/2

Unlike Stages 3 and 5, which have three possible scenarios, this stage has only two, as

illustrated in Figure A.1. The 2nd Layer denotes the scenario in which the firm issues

SBc
T and CBc

T, 3T/2 at t = T/2 to repay the maturing SBc
T/2 and early redeem CBc

T/2, T
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(i.e., bonds in the first layer). The equity value on the issue date can be determined using

backward induction in the 2rd layer CRR tree, as described by Equation (32). The values

of SBc
T and CBc

T, 3T/2 can also be computed using the expressions of Equations (34) and

(36), in which a = 1, b = 3/2, and p = 1. On the other hand, the 1st Layer refers to the

scenario in which the firm will either choose to refinance CBc
T/2, T early and simultaneously

roll over the SBc
T/2 through the proceeds from raising CBc

T, 3T/2 and SBc
T (i.e., transfer

from the first layer to the second), roll over SBc
T/2 alone through the proceeds from raising

the SBc
T (i.e., stay in the first layer), or declare default. The values of Ec

T/2, T , SB
c
T/2, and

CBc
T/2, T can be expressed by Equations (40), (25), and (38), in which a = 1/2, b = 1,

and p = 1/2.

Stage 8: 0 < t < T/2

As illustrated in Figure A.1, the first layer refers to the debt structure comprised of a

T/2-year SBc
T/2 and a T -year CBc

T/2,T . The values of the equity Ec
T/2, T and the two bonds

are expressed as Equations (31), (33), and (35), in which a = 1/2, b = 1, and p = 1/2.

Stage 9: t = 0

When the firm issues SBc
T/2 and CBc

T/2, T at t = 0, the equity value on this issue date,

considering all of the debt refinancing described, is determined using backward induc-

tion in the 1rd layer black CRR tree, as described by Equation (32). The values of

SBc
T/2 and CBc

T/2, T can also be found using expressions of Equations (34) and (36), in

which a = 1/2, b = 1, and p = 1/2. In this paper, we let Ec(V0, 0) ≡ Ec
T/2,T (V0, 0),

SBc(V0, 0 |T/2) ≡ SBc
T/2(V0, 0 |T/2), and CBc(V0, 0 |T/2, T ) ≡ CBc

T/2,T (V0, 0 |T/2, T ),

as expressed in Equation (2).

This backward induction procedure enables us to find the levered equity value when

the debt structure includes a non-callable bond and a longer-term callable bond with a
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single specified call date. Any extension of the backward-recursive pricing algorithm using

a forest will be made based on this baseline scenario.

A.1.2 Extension

In this paper, a T/m-year non-callable bond SBc, a T -year callable bond CBc, and the

corresponding equity described in Equation (2) are simultaneously evaluated under the

settings of the lumpy debt maturity and the constant book leverage policy. To associate

the evaluation with all possible debt refinancing activities, we employ a forest composed

of several layers of CRR binomial trees. The forest in Panel C of Figure 2 addresses the

scenario with m = 2 and the CBc having a single call date. We make three extensions to

facilitate our analysis.

The first extension is from m = 2 into m > 2 to shorten the stated maturity of SBc

and increase the firm’s rollover frequency. This extension does not increase the number

of forest layers, yet adds the number of debt structure statuses to individual trees for

simulating additional rollover cycles. In Figure A.1, there are two debt structure statues

within T years (before and after the SBc is rolled over) in the first to third layer when m

is equal to 2. If m is increased to 4, then the status will also increase to 4. In addition,

the increment in debt structure statuses will increase the number of backward induction

stages in the forest. For example, if m is increased from 2 to 4 within a 2T -year time

span, the backward induction procedure will be separated from 9 (i.e., 2× (2× 2)+1) in

Figure A.1 to 17 (i.e., 2× (2× 4)+1) stages.

The second extension is from the evaluation framework of a 2T -year time span into

that of a NT -year time span, in which N is sufficiently large to approximate the infinite

time horizon adopted by most structural credit risk models. This extension can be handled

simply by adding more tree layers to a forest. The forest in Panel C is composed of 4

(i.e., 2 × 2) tree layers when N is equal to 2. If N is increased to 3 and all other things

remain unchanged, then the number of tree layers will increase to 6 (i.e., 3× 2).
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The third extension is from a single call date into multiple call dates during the

predetermined call protection period, which we address in two main steps. First, we start

by considering a T -year callable bond with multiple redemption dates (i.e., call dates plus

the stated maturity date) spaced equally apart. The bond is regarded as continuously

callable when the interval between any two consecutive redemption dates matches the

time step length, ∆t, in the CRR tree. To illustrate, we now consider an otherwise

identical callable bond CBc
T/2, T with three call dates at t = T/4, T/2, and 3T/4, and all

other things remain unchanged. The backward induction procedure for pricing equity and

bonds shifts from Figure A.1 to Figure A.2. With the increase of redemption dates from

2 to 4 for the T -year bond, the number of backward induction stages within a 2T -year

time span rises from 9 (i.e., 2× (2×2)+1) to 17 (i.e., 2× (2×4)+1), and the number of

tree layers within the forest grows from 4 (i.e., 2× 2) to 8 (i.e., 2× 4).30 Each backward

induction stage’s evaluation procedure mirrors the details introduced in Appendix A.1.1.

For example, the procedures in Stages 9 and 11 in Figure A.2 are similar to those in Stage

5 in Figure A.1; those in Stages 10 and 12 in the former figure are identical to those in

Stage 4 in the latter.

Since equity and bonds are evaluated using a finite NT -year time span, we also notice

that callable bonds cannot always be refinanced through proceeds from raising otherwise

identical ones. In the case of N = 2 in Figure A.2, bonds issued at (after) t = 5T/4

(i.e., in the sixth to eighth layers) are not otherwise identical to previously-issued T -year

callable bonds; only the coupon rates and face values are identical. For example, the

callable bond in the sixth layer, CBc∗
3T/2, 2T , has a stated maturity of 3T/4 years rather

than a T -year since its maturity date should be at t = 2T . In addition, the callable bond

CBc
T, 7T/4 in the fourth layer will be refinanced on its stated maturity date t = 7T/4 with

the T/4-year non-callable SBs∗
2T due to the same reason. The robustness check displayed

30More generally, when we use an NT -year forest to evaluate a T -year callable bond with L redemption
dates, and all other things remain unchanged, the number of backward induction stages equals N × (2×
L) + 1, while the number of tree layers equals N × L.
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in Table A.2 in Appendix A.1.3 shows that the impact of this ad hoc setting on the initial

values of SBc
T/2 and CBc

T/2, T is trivial when N is great enough.

Second, we focus on evaluating callable bonds with multiple call dates within a set

call period. When a callable bond has only one permissible call date, we can evaluate a

levered firm with this bond as well as a shorter-term non-callable bond using the backward

induction procedure depicted in Figure A.1. By removing the call date and replacing the

evaluation procedures in Stage 3 (7) with those in Stage 2 (6) (i.e., omitting the second

and fourth tree layers), we can also evaluate an otherwise identical firm that issues two

non-callable bonds with different maturities. Similarly, for callable bonds with multiple

call dates, we can establish call protection periods of various lengths by eliminating earlier

call dates. For instance, in Figure A.2, a T/2-year call protection period is provided by

removing the call dates marked as “A”. When backward induction reaches the first layer

tree, the evaluation procedures in Stage 15 are simplified to those in Stage 14 within the

same layer. This simplification also appears from the second to sixth layer if the callable

bond is refinanced with an identical callable. Additionally, if call dates labeled as ”B”

are also removed, call protection period extends to 3T/4 years, with further reduction

in evaluation procedures in Stage 13 to those in Stage 12 in the first layer, and similar

reductions applied to other layers. Overall, this method effectively adapts the backward-

recursive pricing algorithm to accommodate callable bonds with varying call dates and

protection periods, thus providing a robust framework for assessing their impact on the

total value of a levered firm.

A.1.3 Robustness Checks

Before applying our quantitative framework, it is important to verify that our framework

generates accurate and stable pricing results. Prior studies such as Broadie and Kaya

(2007) and Wang et al. (2014) examine the robustness of their tree methods by showing

that pricing results converge to analytical solutions with the increment in the number of
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time steps (Duffie, 1996). However, analytical pricing formulas are not available for a

finite-maturity callable bond.

Instead of directly confirming the correctness of pricing results, we follow Liu et al.

(2016) and indirectly check the rationality of pricing results as a whole by employing

capital structure irrelevance theory proposed by Modigliani and Miller (1958). Essentially,

in the capital market without frictions (i.e., no corporate income taxes, bankruptcy costs,

and debt flotation costs), the market value of a firm is independent of its capital structure.

As a result, a levered firm value V L.c in Equation (2) generated by our proposed framework

should be equal to the unlevered firm value V in Equation (1) under otherwise identical

conditions. Our numerical results in Panel A of Table A.1 show that the initial levered

firm value V L.c
0 , which is equal to the lump sum of SBc and CBc plus corresponding

equity values, is equal to the initial unlevered firm value V0 (100 in Panel A) regardless

of the debt structure scenarios listed in the first row. Under the equality, we observe

that yield spreads of P -year SBc increase with P , since credit risk increases as the stated

maturity increases. Given that the stated maturity of CBc is 10 years, the yield spreads

of CBc decrease with increments in the call protection length P , because CBc holders are

granted more protection against call risk and thus require lower call risk premiums. We

also observe that yield spreads of the SBc converge to those of CBc as P is equal to 10

years, since the callable degenerates into SBc as its call protection length equals its stated

maturity. These observations persist even when the capital structure irrelevance theory is

invalid, as exhibited in Panel B. On the other hand, equity and bond values generated by

our framework are stable. We observe that all pricing results in Table A.1 change little

(i.e., less than 0.2% for equity values and 5 basis points for bond yield spreads) when

Time steps (listed in the second row) increases from 32 to 128.

Since equity and bonds are evaluated using a finite time span equal to N × 10 years,

we note that bonds cannot always be refinanced by issuing otherwise identical ones, as

mentioned in Appendix A.1.2. We now check how the value of N and the aforementioned
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ad hoc setting influence the pricing results of the P -year SBc and the T -year CBc. We

observe in Table A.2 that the value of N has no impact on all pricing results when capital

markets are frictionless in Panel A, and has little impact on bond prices when capital

markets have frictions in Panel B. Ceteris paribus, an increase in the entire time span

will enhance equity values, and higher equity values will delay the firm’s default decision,

thereby decreasing bond yield spreads. However, the impact of this delay on the prices

of finite-maturity bonds is limited. In addition, the ad hoc scenario will only appear at

a time far away from the life of our targeted bonds if N is great enough. Therefore, the

impact of this scenario is also limited. As shown in Panel B, the yield spreads of the two

bonds decrease by less than 3 basis points as the N listed in the second row increases

from 5 to 7.

A.2 Interpretation of Data for First Call Dates and Action Ef-

fective Dates

We retrieve first call dates from call schedules, refund protection, and make-whole call

provisions. First, if a bond’s entire call schedule, named “CALL SCHEDULE” in Mergent

FISD, is available, we set its first call date to the earliest call date in the schedule. If

this isn’t the case but the bond has a complete call schedule available in Bloomberg,

we select the earliest call date as the bond’s first call date. If the aforementioned two

data sources are absent, we set the bond’s first call date to the CALL DATE recorded in

SDC if available. Here we utilize nine-digit issue CUSIPs as bond identifiers across the

aforementioned three databases. Next, if the call schedule is unavailable, then we detect

the presence of the refund protection (i.e., REFUND PROTECTION = “Y” in Mergent

FISD) and use the REFUNDING DATE as its first call date as in Powers (2021). Third,

for a callable bond that has a make-whole call provision but lacks a call schedule and

refund protection, we set its first call date to coincide with its make-whole start date,

named“MAKE WHOLE START DATE” in Mergent FISD. Finally, we utilize a callable
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bond’s “INITIAL CALL DATA” in Mergent FISD if the three pieces of information that

we have discussed are unavailable. We pick the date following “NC”, which represents

“Not Callable until”, as the first call date. For example, the first call date is set to

“10/16/2015” for the callable bond with recorded information“NC 10/16/2015 CONT @

PAR.” On the other hand, if the recorded information starts with “CC”, which denotes

Continuously Callable, then the first call date is set to the bond offering date.

The EFFECTIVE DATE in Mergent FISD is the action effective date corresponding to

the ACTION TYPE for a bond. In this paper, we merely focus on seven ACTION TYPEs

that indeed lead to changes in outstanding amounts, which are coded as “B,” “E,” “P,”

“IRP,” “T,” “F,” and “IM” in Mergent FISD. The action with ACTION TYPE = “IM” in

Mergent FISD refers to redemption at maturity. The ACTION TYPE = “B,” “E,” “P,”

“IRP,” “T,” or “F” refers to redemption before maturity, in which the former three types

indicate redemption through calls, “IRP” indicates redemption through repurchases, “T”

indicates tender offers, and “F” indicates refunding. The effective maturity of a bond,

denoted by BondEffM, is defined as a simple average of the time span (measured in

years) between the bond issue date and each redemption effective date. If all outstanding

amounts are redeemed at once, then the bond’s BondEffM is set to the time span between

the issue date and the unique redemption effective date.

A.3 Mapping Mergent FISD with Compustat

We merge the bond data in Mergent FISD with the firm data in Compustat to build

our firm-level sample. Since the unique firm identifier in Compustat, GVKEY, is not

recorded in Mergent FISD, we employ CIK and six-digit issuer CUSIP as bridges to match

Mergent FISD bond issuers to Compustat and SDC. To make our firm-level data more

complete, we hand collect data from the U.S. Security and Exchange Commission (SEC)31

to supplement some missing data. Since some bond issuers’ information in Mergent FISD

31EDGAR database
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are different or missing in Compustat due to reasons like corporate restructuring, we collect

the information from SEC and other public finance information platforms like Bloomberg

to replace and fill.

A.4 Variable Definitions

The variables used in our empirical analysis are listed in Table A.3. The bond-level

variables in Panel A are defined mainly according to the data elements in Mergent FISD.

In particular, a bond may have ratings from four different credit rating agencies. To

determine the rating on the bond issue date, we prioritize S&P’s bond rating (abbreviated

as SPR). If the SPR is missing, we turn to Moody’s (MR). If both the SPR and MR are

unavailable, we then consider Fitch’s (FR), followed by Duff and Phelps’s (DPR). We

note that Mergent FISD transforms bond ratings from the four credit rating agencies into

ordinal scores, and we follow the scores assigned by Mergent FISD. For example, it assigns

Aaa (AAA) from Moody’s (S&P, Fitch, and Duff and Phelps) to 1, and Ca (CC) from

Moody’s (S&P and Fitch) to 21.32 The firm-level control variables used in the regression

are defined in Panel B, mainly according to the data elements in Compustat. To mitigate

the impact of outliers and possible coding errors, we winsorize all firm-level variables at

the upper and lower one percentiles. This winsorization is consistently applied across all

of our analyses.

Our firm-level dependent variables, FirmCoupon, FirmCProtR, and FirmElimR, are

defined in Equations (16), (17), and (18). They are constructed using the bond-level

variables in Panel A of Table A.3 to characterize the bond characteristics at the firm level.

To illustrate how we construct these variables, we provide a simple example in Table A.4.

We consider a firm (i.e., i-th firm) with two callable bonds outstanding during the period

1998-2009, Callable Bond 1 and Callable Bond 2. For ease of illustration, we assume that

32We observe alignment in the first 16 credit ratings, ranging from Aaa (AAA) to B3 (B-) provided
by Moody’s (S&P, Fitch, and Duff and Phelps). For the first 5 ratings below B3 (B-), Moody’s Caa1 to
C align with S&P’s and Fitch’s CCC to C. Below the C rating, Moody’s only has two rating categories,
while S&P’s and Fitch’s both have four.
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the firm just redeemed a previously-issued bond through proceeds from raising Callable

Bond 1 in 1998. Since this action is an early refinancing activity as defined in Xu (2018),

we use a binary variable D(EarlyRefinancing)i,t,j to mark the year of this refinancing

date. For Callable Bond 1, the date is in the year 1998, so D(EarlyRefinancing)i,t,1

should be assigned a value of one when subscript t equals 1998 and zero when the t equals

other years in the bond’s lifespan, as exhibited in Panel A. The callable has a coupon rate

of 7%, a 10-year stated maturity, and a 5-year call protection period. We then use another

binary variable D(TurnCallable)i,t,j to mark the year of the bond’s first call date. In this

case, the first call date is in the year 2003, so D(TurnCallable)i,t,1 should be assigned a

value of one when subscript t equals 2003 and zero when the t equals other years in the

bond’s lifespan. Based on these settings, we further suppose that Callable Bond 1 was

redeemed early right on its first call date through the firm’s own internal funds rather

than the proceeds from raising new bonds. Since Callable Bond 2 was issued in 2001 not

for early refinancing of an outstanding bond, D(EarlyRefinancing)i,t,2 equals zero for

all t in the bond’s lifespan. In addition, the callable has a coupon rate of 4.8%, a 8-year

stated maturity, and a 3-year call protection period. Thus, D(TurnCallable)i,t,1 should

be assigned a value of one when the subscript t equals 2004 and zero when the t equals

other years of the bond’s life. Finally, it should be redeemed early right on its first call

date in the year 2004 through the firm’s own internal funds. Other information is detailed

in Panel B.

The firm-level variables in Panel C are constructed using the bond-level variables in

Panels A and B. In particular, since BondStaM (BondCProt) is the stated maturity (call

protection length) determined at the time of debt issuance, it stays constant before the

year in which the bond is retired.33 For example, Callable Bond 1 exhibits the BondStaM

of 10 during the period between 1998 and 2002. On the other hand, BondElim is computed

33We calculate the two-date time span in years with precision in terms of days in our empirical analysis.
However, for clarity’s sake, we present the calculated figure with the unit of years here in Table A.4. The
same rule is applied to BondElim.
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as the time span in years between a bond’s redemption effective date and stated maturity

date; it is defined only in the year in which the bond is retired. For example, Callable

Bond 1 exhibits the BondElim of 5 only in the year of 2003. BondCoupon is the nominal

coupon rate of each bond. Similar to BondStaM and BondCProt, it is defined during

the period between debt issue and retired years. While most coupon rates for our bond

sample are fixed-type, we trace the changes in coupon rates for the reset bonds and adjust

their coupon rates annually before the retired year. In Panel C, D(TurnCallable)i,t and

D(EarlyRefinancing)i,t are the firm-level binary variables. Their values in one year

equals one if there is at least one bond turns callable (or been early refinanced) in that

year. For all other firm-level variables, they are calculated as the simple averages of the

bond-level variables in Panels A and B in the corresponding time location by following

the definitions in Equations (15), (16), (17), and (18).
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Figure A.1: Nine stages for the backward induction procedure when applying the

forest in Panel C of Figure 2. In this case, every T -year callable bond CBc has only one

permissible call date, which occurs at the midpoint of a bond’s lifespan and is represented by a

rectangle in this figure. All non-callable bonds, SBc and SBs, have a stated maturity of T/2

years.
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Figure A.2: Backward induction procedure for evaluating a callable bond with three

call dates. In this case, each T -year callable bond CBc has three allowable call dates, which

are spaced equally apart and are represented by rectangles. The callable bond appeared in the

sixth layer, CBc∗, has a stated maturity of 3T/4 years and two call dates. All non-callable

bonds, SBc and SBs, have a stated maturity of T/2 years, except for the one: SBs∗ in the

eighth layer, which has a stated maturity of T/4 years.
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Table A.1: Convergence of equity and bond values.

We consider a firm with the debt structure composed of a P -year non-callable bond SBc and

a 10-year callable bond CBc with a P -year call protection period. Bond prices, corresponding

bond yield spreads in basis points (listed in parentheses), and equity values Ec (in the last row)

generated by our numerical framework are examined under three different scenarios denoted by

the first row. Time steps in the second row denotes the number of time steps used to partition

the 1-year time span in our framework. The framework is built using a 60-year time span. The

total debt face value is 61.68; the face values for SBc and CBc account for 8% and 92% of the

total debt value, respectively. The coupon rates for the two bonds are all set to 6%. CBc can

be refinanced early through a call once per year after the call protection period expires. The

scheduled call prices are all set to the face value of CBc. The firm’s prevailing asset value V0 is

100, its volatility σ is 21%, and the risk-free rate r is 4.61%. Panel A displays the pricing results

when the corporate tax rate τ , bankruptcy cost ω, and debt flotation cost γ are all set to 0.

Panel B displays the results when the τ , ω, and γ are set to 30.6%, 37%, and 0.5%, respectively.

Panel A: Capital market without frictions

Scenario P = 1 P = 5 P = 10

Time steps 32 64 128 32 64 128 32 64 128

SBc(P -yr) 5.00 5.00 5.00 5.12 5.13 5.12 5.20 5.20 5.20

(1.83) (1.51) (1.76) (52.30) (51.09) (51.76) (68.48) (68.30) (68.25)

CBc(10-yr) 57.07 57.06 57.07 56.70 56.72 56.70 58.89 59.89 59.86

(130.87) (131.32) (131.28) (102.26) (102.26) (102.24) (68.48) (68.30) (68.25)

Ec 37.93 37.94 37.93 36.56 36.54 36.56 34.97 34.95 34.95

Panel B: Capital market with frictions

Scenario P = 1 P = 5 P = 10

Time steps 32 64 128 32 64 128 32 64 128

SBc(P -yr) 5.00 5.00 5.00 5.12 5.12 5.12 5.06 5.05 5.06

(0.28) (0.56) (0.34) (54.69) (50.68) (52.30) (106.39) (106.92) (108.24)

CBc(10-yr) 55.34 55.34 55.29 56.70 56.72 56.70 58.13 58.12 58.13

(171.86) (172.12) (173.60) (139.52) (139.32) (139.95) (106.39) (106.92) (108.24)

Ec 49.16 49.12 49.09 51.21 51.21 51.22 50.53 50.49 50.49
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Table A.2: Robustness check for equity and bond values priced by the quantitative

framework with different time spans.

Bond prices, corresponding bond yield spreads in basis points (listed in parentheses), and equity

values Ec (in the last row) generated by our quantitative framework are examined under three

different scenarios denoted by the first row. N in the second row represents that our quantitative

framework is constructed using a time span equal to N × 10 years. The number of time steps

to partition the 1-year time span is set to 32. All other settings mirror those in Table A.1.

Panel A: Capital market without frictions

Scenario P = 1 P = 5 P = 10

N 5 6 7 5 6 7 5 6 7

SBc(P -yr) 5.00 5.00 5.00 5.12 5.12 5.12 5.20 5.20 5.20

(1.83) (1.83) (1.83) (52.30) (52.30) (52.30) (68.48) (68.48) (68.48)

CBc (10-yr) 57.07 57.07 57.07 58.32 58.32 58.32 59.83 59.83 59.83

(130.87) (130.87) (130.87) (102.26) (102.26) (102.26) (68.48) (68.48) (68.48)

Ec 37.93 37.93 37.93 36.56 36.56 36.56 34.97 34.97 34.97

Panel B: Capital market with frictions

Scenario P = 1 P = 5 P = 10

N 5 6 7 5 6 7 5 6 7

SBc (P -yr) 5.00 5.00 5.00 5.12 5.12 5.12 5.05 5.06 5.06

(0.28) (0.28) (0.28) (55.25) (54.69) (54.19) (107.43) (106.39) (105.84)

CBc (10-yr) 55.28 55.34 55.35 56.63 56.70 56.73 58.09 58.13 58.16

(173.21) (171.86) (171.32) (141.18) (139.52) (138.84) (107.43) (106.39) (105.84)

Ec 48.81 49.16 49.36 50.70 51.21 51.53 50.04 50.53 50.82
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Table A.3: Variable Definitions

This table provides the construction of our bond-level and firm-level variables used in our em-

pirical analysis. RI denotes refinancing intensity. Curlia denotes current liability. M/B Ratio

denotes market-to-book ratio.

Variable Definition

Panel A: Bond-level variable
BondStaM Time span in years between a bond’s offering date and stated maturity date
BondEffM Time span in years between a bond’s offering date and redemption effective date
BondCProt Time span in years between a bond’s offering date and first call date
BondCProtR BondCProt/BondStaM
BondElim Time span in years between a bond’s redemption effective date and stated maturity date
BondElimR BondElim/BondStaM
BondCoupon The nominal coupon rate of a bond
Covenant count Number of restrictive covenants present in one bond; the restrictive covenants are identified

according to the definition in Billett et al. (2007).
Bond rating The ordinal rating score assigned by Mergent FISD. The priority of the rating selection:

SPR ≻ MR ≻ FR ≻ DPR .

Panel B: Firm-level control variable
Leverage Total assets/Total stockholders’ equity, as in Kalemli-Ozcan et al. (2012).
RI Long-term debt due in one year/(Long-term debt due in one year + Debt due in more than one year)
Curlia Debt in current liability/(Debt in current liability + Debt due in more than one year)

as in Duchin et al. (2010)
ln(Asset) Natural log of total assets
M/B Ratio (Total assets−Common equity+Common shares outstanding×Closing price (fiscal year))/Total assets
Tangibility Property, plant and equipment/Total assets
EBITDA Earnings before interest, tax, depreciation and amortization/Total assets
Cash Cash and short-term investment/Total assets
Equity return ∆Closing price (fiscal year)/L.Closing price (fiscal year), adjusted for

cumulative adjustment factor if applicable
TermSpread Difference between the 10-year and 1-year corporate yield according to the data items

in Federal Reserve Board’s H.15 Report
Firm rating The ordinal score of S&P long-term firm credit rating; AAA = 1, AA+ = 2,..., and D=22,

as in Gopalan et al. (2014)
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